
Package ‘simulateDCE’
July 9, 2025

Title Simulate Data for Discrete Choice Experiments

Version 0.3.0

Description
Supports simulating choice experiment data for given designs. It helps to quickly test differ-
ent designs against each other and compare the performance of new models. The goal of 'simulat-
eDCE' is to make it easy to simulate choice experiment datasets using designs from 'NGENE', 'ide-
fix' or 'spdesign'. You have to store the design file(s) in a sub-directory and need to specify cer-
tain parameters and the utility functions for the data generating process. For more de-
tails on choice experiments see Mariel et al. (2021) <doi:10.1007/978-3-030-62669-3>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports dplyr (>= 1.1.4), evd, formula.tools, ggplot2, kableExtra,
magrittr, mixl, psych, purrr, readr, rmarkdown, stats, utils,
stringr, tibble, tictoc, tidyr, future, furrr, qs, data.table

Suggests knitr, testthat (>= 3.0.0), rlang

Config/testthat/edition 3

Depends R (>= 4.1.0)

VignetteBuilder knitr

NeedsCompilation no

Author Julian Sagebiel [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0253-6875>)

Maintainer Julian Sagebiel <julian.sagebiel@idiv.de>

Repository CRAN

Date/Publication 2025-07-09 10:30:02 UTC

Contents
aggregateResults . 2
createDataset . 2
extract_b_values . 3

1

https://doi.org/10.1007/978-3-030-62669-3
https://orcid.org/0000-0002-0253-6875

2 createDataset

readdesign . 4
simulate_choices . 4
sim_all . 6
sim_choice . 9

Index 12

aggregateResults Aggregate Simulation Results

Description

Processes the simulation results to extract summaries, coefficients, and graphs.

Usage

aggregateResults(all_designs, fromfolder = NULL)

Arguments

all_designs A list of simulation results from sim_choice. Can contain different designs but
need to have the common structure returned by simchoice

fromfolder A folder from where to read simulations. If provided, the function will read all
.qs files from the folder and process them. The files are usually saved by your
earlier work and should be qs files as they are more efficient that rds files.

Value

A list with aggregated results including summary, coefficients, graphs, and power.

createDataset Create a Dataset for Choice Experiment Analysis

Description

This function takes a design matrix and generates a dataset for use in choice experiments. It handles
blocks, replicates the design for the number of respondents, and assigns respondent IDs.

Usage

createDataset(design, respondents)

Arguments

design A data frame containing the design matrix for the choice experiment. It should
include at least the columns Choice.situation and optionally Block.

respondents The number of respondents to generate data for.

extract_b_values 3

Details

The function performs the following steps:

• Checks if the Block column exists in the input design. If absent, it creates a single block.
• Calculates the number of choice sets and blocks, and determines the number of sets per block.
• Replicates the design to account for the specified number of respondents per block.
• Assigns respondent IDs based on the number of respondents and blocks.

Value

A data frame containing the augmented design matrix with additional columns:

ID A unique identifier for each respondent.
Choice.situation The original choice situations, replicated for respondents.
Other columns All original columns in the input design are retained.

Examples

Example usage:
design <- data.frame(

Choice.situation = rep(1:12),
Attribute1 = rnorm(12),
Attribute2 = sample(1:3, 12, replace = TRUE)

)
result <- createDataset(design, 10)

extract_b_values Title Extracts beta values from an spdesign object

Description

Title Extracts beta values from an spdesign object

Usage

extract_b_values(input_list)

Arguments

input_list the list where the parameters are stored. Usually this is design$utility

Value

A named list with parameter values which can be used in sim_all

Examples

d <- system.file("extdata", "CSA", "linear", "BLIeff.RDS", package = "simulateDCE")
extract_b_values(readRDS(d)$utility)

4 simulate_choices

readdesign Creates a dataframe with the design.

Description

Creates a dataframe with the design.

Usage

readdesign(design = designfile, designtype = NULL, destype = NULL)

Arguments

design The path to a design file

designtype Is it a design created with ngene, spdesign or idefix. use ’ngene’, ’spdesign’ or
’idefix. Ngene designs should be stored as the standard .ngd output. spdesign
should be the spdesign object stored as an RDS file. Idefix objects should also
be stored as an RDS file. If designtype is not specified, I try to guess what it is.
This is especially helpful if you want to carry out a simulation for both spdesign
designs and ngene designs at the same time.

destype Deprecated. Use designtype instead.

Value

a dataframe

Examples

library(simulateDCE)
mydesign <- readdesign(

system.file("extdata", "agora", "altscf_eff.ngd", package = "simulateDCE"),
"ngene"

)

print(mydesign)

simulate_choices Simulate choices based on a data.frame with a design and respondents

Description

Simulate choices based on a data.frame with a design and respondents

simulate_choices 5

Usage

simulate_choices(
data,
utility,
setspp,
bcoeff,
decisiongroups = c(0, 1),
manipulations = list(),
estimate,
preprocess_function = NULL

)

Arguments

data a dataframe that includes a design repeated for the number of observations

utility a list with the utility functions, one utility function for each alternatives

setspp an integer, the number of choice sets per person

bcoeff List of initial coefficients for the utility function. List content/length can vary
based on application. I ideally begins (but does not have to) with b and need be
the same as those entered in the utility functions

decisiongroups A vector showing how decision groups are numerically distributed

manipulations A variable to alter terms of the utility functions examples may be applying a
factor or applying changes to terms selectively for different groups

estimate If TRUE models will be estimated. If false only a dataset will be simulated.
Default is true

preprocess_function

= NULL You can supply a function that reads in external data (e.g. GIS coordi-
nates) that will be merged with the simulated dataset. Make sure the the function
outputs a data.frame that has a variable called ID which is used for matching.

Value

a data.frame that includes simulated choices and a design

Examples

example_df <- data.frame(
ID = rep(1:100, each = 4),
price = rep(c(10, 10, 20, 20), 100),
quality = rep(c(1, 2, 1, 2), 100)

)

beta <- list(
bprice = -0.2,
bquality = 0.8

)

ut <- list(

6 sim_all

u1 = list(
v1 = V.1 ~ bprice * price + bquality * quality,
v2 = V.2 ~ 0

)
)
simulate_choices(example_df, ut, setspp = 4, bcoeff = beta, estimate = FALSE)

sim_all Is a wrapper for sim_choice executing the simulation over all designs
stored in a specific folder update

Description

Is a wrapper for sim_choice executing the simulation over all designs stored in a specific folder
update

Usage

sim_all(
nosim = 2,
resps,
designtype = NULL,
destype = NULL,
designpath,
u,
bcoeff,
decisiongroups = c(0, 1),
manipulations = list(),
estimate = TRUE,
chunks = 1,
utility_transform_type = "simple",
reshape_type = "auto",
mode = c("parallel", "sequential"),
preprocess_function = NULL,
savefile = NULL

)

Arguments

nosim Number of runs or simulations. For testing use 2 but once you go serious, use at
least 200, for better results use 2000.

resps Number of respondents you want to simulate

designtype Is it a design created with ngene, spdesign or idefix. use ’ngene’, ’spdesign’ or
’idefix. Ngene designs should be stored as the standard .ngd output. spdesign
should be the spdesign object stored as an RDS file. Idefix objects should also
be stored as an RDS file. If designtype is not specified, I try to guess what it is.

sim_all 7

This is especially helpful if you want to carry out a simulation for both spdesign
designs and ngene designs at the same time.

destype Deprecated. Use designtype instead.

designpath The path to the folder where the designs are stored. For example "c:/myfancydec/Designs"

u A list with utility functions. The list can incorporate as many decision rule
groups as you want. However, each group must be in a list in this list. If you
just use one group (the normal), this group still has to be in a list in the u list. As
a convention name beta coefficients starting with a lower case "b"

bcoeff List of initial coefficients for the utility function. List content/length can vary
based on application. I ideally begins (but does not have to) with b and need be
the same as those entered in the utility functions

decisiongroups A vector showing how decision groups are numerically distributed

manipulations A variable to alter terms of the utility functions examples may be applying a
factor or applying changes to terms selectively for different groups

estimate If TRUE models will be estimated. If false only a dataset will be simulated.
Default is true

chunks The number of chunks determines how often results should be stored on disk as
a safety measure to not loose simulations if models have already been estimated.
For example, if no_sim is 100 and chunks = 2, the data will be saved on disk
after 50 and after 100 runs.

utility_transform_type

How the utility function you entered is transformed to the utility function re-
quired for mixl. You can use the classic way (simple) where parameters have to
start with "b" and variables with "alt" or the more flexible (but potentially error
prone) way (exact) where parameters and variables are matched exactly what
how the are called in the dataset and in the bcoeff list. Default is "simple". In
the long run, simple will be deleted, as exact should be downwards compatible.

reshape_type Must be "auto", "stats" to use the reshape from the stats package or tidyr to use
pivot longer. Default is auto and should not bother you. Only change it once
you face an error at this position and you may be lucky that it works then.

mode Set to "parallel" if parts should be run in parallel mode

preprocess_function

= NULL You can supply a function that reads in external data (e.g. GIS coordi-
nates) that will be merged with the simulated dataset. Make sure the the function
outputs a data.frame that has a variable called ID which is used for matching.

savefile Indicate a path if you want to store the results after each design simulation lo-
cally. This is useful in case you fear that your computer crashes

Value

A list, with all information on the simulation. This list an be easily processed by the user and in the
rmarkdown template.

8 sim_all

Examples

library(rlang)
designpath <- system.file("extdata", "SE_DRIVE", package = "simulateDCE")
resps <- 120 # number of respondents
nosim <- 2 # number of simulations to run (about 500 is minimum)

decisiongroups <- c(0, 0.7, 1)

pass beta coefficients as a list
bcoeff <- list(

b.preis = -0.01,
b.lade = -0.07,
b.warte = 0.02

)

manipulations <- list(
alt1.x2 = expr(alt1.x2 / 10),
alt1.x3 = expr(alt1.x3 / 10),
alt2.x2 = expr(alt2.x2 / 10),
alt2.x3 = expr(alt2.x3 / 10)

)

place your utility functions here
ul <- list(

u1 =

list(
v1 = V.1 ~ b.preis * alt1.x1 + b.lade * alt1.x2 + b.warte * alt1.x3,
v2 = V.2 ~ b.preis * alt2.x1 + b.lade * alt2.x2 + b.warte * alt2.x3

),
u2 = list(

v1 = V.1 ~ b.preis * alt1.x1,
v2 = V.2 ~ b.preis * alt2.x1

)
)

sedrive <- sim_all(
nosim = nosim,
resps = resps,
designpath = designpath,
u = ul,
bcoeff = bcoeff,
decisiongroups = decisiongroups,
manipulations = manipulations,
utility_transform_type = "exact",
mode = "sequential",
estimate=FALSE

)

sim_choice 9

sim_choice Simulate and estimate choices

Description

Simulate and estimate choices

Usage

sim_choice(
designfile,
no_sim = 10,
respondents = 330,
u,
designtype = NULL,
destype = NULL,
bcoeff,
decisiongroups = c(0, 1),
manipulations = list(),
estimate,
chunks = 1,
utility_transform_type = "simple",
mode = c("parallel", "sequential"),
preprocess_function = NULL,
savefile = NULL

)

Arguments

designfile path to a file containing a design.

no_sim Number of runs i.e. how often do you want the simulation to be repeated

respondents Number of respondents. How many respondents do you want to simulate in each
run.

u A list with utility functions. The list can incorporate as many decision rule
groups as you want. However, each group must be in a list in this list. If you
just use one group (the normal), this group still has to be in a list in the u list. As
a convention name beta coefficients starting with a lower case "b"

designtype Is it a design created with ngene, spdesign or idefix. use ’ngene’, ’spdesign’ or
’idefix. Ngene designs should be stored as the standard .ngd output. spdesign
should be the spdesign object stored as an RDS file. Idefix objects should also
be stored as an RDS file. If designtype is not specified, I try to guess what it is.
This is especially helpful if you want to carry out a simulation for both spdesign
designs and ngene designs at the same time.

destype Deprecated. Use designtype instead.

10 sim_choice

bcoeff List of initial coefficients for the utility function. List content/length can vary
based on application. I ideally begins (but does not have to) with b and need be
the same as those entered in the utility functions

decisiongroups A vector showing how decision groups are numerically distributed

manipulations A variable to alter terms of the utility functions examples may be applying a
factor or applying changes to terms selectively for different groups

estimate If TRUE models will be estimated. If false only a dataset will be simulated.
Default is true

chunks The number of chunks determines how often results should be stored on disk as
a safety measure to not loose simulations if models have already been estimated.
For example, if no_sim is 100 and chunks = 2, the data will be saved on disk
after 50 and after 100 runs.

utility_transform_type

How the utility function you entered is transformed to the utility function re-
quired for mixl. You can use the classic way (simple) where parameters have to
start with "b" and variables with "alt" or the more flexible (but potentially error
prone) way (exact) where parameters and variables are matched exactly what
how the are called in the dataset and in the bcoeff list. Default is "simple". In
the long run, simple will be deleted, as exact should be downwards compatible.

mode Set to "parallel" if parts should be run in parallel mode
preprocess_function

= NULL You can supply a function that reads in external data (e.g. GIS coordi-
nates) that will be merged with the simulated dataset. Make sure the the function
outputs a data.frame that has a variable called ID which is used for matching.

savefile Indicate a path if you want to store the results after each design simulation lo-
cally. This is useful in case you fear that your computer crashes

Value

a list with all information on the run

Examples

bcoeff <- list(
basc = -1.2,
basc2 = -1.4,
baction = 0.1,
badvisory = 0.4,
bpartnertest = 0.3,
bcomp = 0.02

)
ul <- list(

u1 =
list(
#' # model specification --

v1 <- V.1 ~ basc +
baction * alt1.b +
badvisory * alt1.c +

sim_choice 11

bpartnertest * alt1.d +
bcomp * alt1.p,

v2 <- V.2 ~ basc2 +
baction * alt2.b +
badvisory * alt2.c +
bpartnertest * alt2.d +
bcomp * alt2.p,
v3 <- V.3 ~ 0

)
)

sim_choice(
designfile = system.file("extdata", "agora", "altscf_eff.ngd", package = "simulateDCE"),
no_sim = 2,
respondents = 144,
u = ul,
bcoeff = bcoeff,
estimate = FALSE

)

Index

aggregateResults, 2

createDataset, 2

extract_b_values, 3

readdesign, 4

sim_all, 6
sim_choice, 9
simulate_choices, 4

12

	aggregateResults
	createDataset
	extract_b_values
	readdesign
	simulate_choices
	sim_all
	sim_choice
	Index

