AC.index |
Assignment Confidence (AC) index |
Achlioptas.hclustering |
Multiple Hierarchical clusterings using Achlioptas random projections |
Achlioptas.hclustering.tree |
Multiple Hierarchical clusterings using Achlioptas random projections |
Achlioptas.random.projection |
Achlioptas random projection |
Average.Contraction |
Distortion measures: Max., min, and average expansion and contraction |
Average.Expansion |
Distortion measures: Max., min, and average expansion and contraction |
Cluster.validity |
Validity indices computation |
Cluster.validity.from.similarity |
Validity indices computation |
Do.similarity.matrix |
Functions to compute a pairwise similarity matrix. |
Do.similarity.matrix.partition |
Functions to compute a pairwise similarity matrix. |
Generate.clusters |
Multiple clusterings generation from the corresponding trees |
generate.sample.h1 |
Two-levels hierarchical cluster generator. |
generate.sample.h2 |
Three-level hierarchical cluster generator. |
generate.sample.h3 |
Two-levels hierarchical cluster generator. |
generate.sample0 |
Sample0 generator of synthetic data |
generate.sample1 |
Sample1 generator of synthetic data |
generate.sample2 |
Sample2 generator of synthetic data |
generate.sample3 |
Sample3 generator of synthetic data |
generate.sample4 |
Sample4 generator of synthetic data |
generate.sample5 |
Sample5 generator of synthetic data |
generate.sample6 |
Sample6 generator: multivariate normally distributed data synthetic generator |
generate.sample7 |
Sample7 generator: multivariate normally distributed data synthetic generator |
generate.uniform |
Uniform bidimensional data generator |
generate.uniform.random |
Uniform bidimensional random data generator. |
JL.predict.dim |
Dimension of the subspace or the distortion predicted according to the Johnson Lindenstrauss lemma |
JL.predict.dim.multiple |
Dimension of the subspace or the distortion predicted according to the Johnson Lindenstrauss lemma |
JL.predict.distortion |
Dimension of the subspace or the distortion predicted according to the Johnson Lindenstrauss lemma |
Max.Contraction |
Distortion measures: Max., min, and average expansion and contraction |
Max.Expansion |
Distortion measures: Max., min, and average expansion and contraction |
Max.Min.Contraction |
Distortion measures: Max., min, and average expansion and contraction |
Max.Min.Expansion |
Distortion measures: Max., min, and average expansion and contraction |
Min.Expansion |
Distortion measures: Max., min, and average expansion and contraction |
Multiple.Random.fuzzy.kmeans |
Multiple Random fuzzy-k-means clustering |
Multiple.Random.hclustering |
Multiple Random hierarchical clustering |
Multiple.Random.kmeans |
Multiple Random k-means clustering |
Multiple.Random.PAM |
Multiple Random PAM clustering |
Norm.hclustering |
Multiple Hierarchical clusterings using Normal random projections |
Norm.hclustering.tree |
Multiple Hierarchical clusterings using Normal random projections |
norm.random.projection |
Normal random projections |
Plus.Minus.One.random.projection |
Plus-Minus-One (PMO) random projections |
PMO.hclustering |
Multiple Hierarchical clusterings using Plus Minus One (PMO) random projections |
PMO.hclustering.tree |
Multiple Hierarchical clusterings using Plus Minus One (PMO) random projections |
rand.norm.generate |
Random generation of normal distributed data |
rand.norm.generate.full |
Random generation of normal distributed data |
random.component.selection |
Function to randomly select the indices of the variables selected by the random subspace projection |
Random.fuzzy.kmeans.validity |
Fuzzy-k-means clustering and validity indices computation using random projections of data |
Random.hclustering.validity |
Random hierarchical clustering and validity index computation using random projections of data. |
Random.kmeans.validity |
k-means clustering and validity indices computation using random projections of data |
Random.PAM.validity |
PAM clustering and validity indices computation using random projections of data |
random.subspace |
Random Subspace (RS) projections |
RS.hclustering |
Multiple Hierarchical clusterings using RS random projections |
RS.hclustering.tree |
Multiple Hierarchical clusterings using RS random projections |
Transform.vector.to.list |
Vector to list transformation of cluster representation |
Validity.indices |
Function to compute the validity index of each cluster. |