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as_period Change tbl_time periodicity

Description

Convert a tbl_time object from daily to monthly, from minute data to hourly, and more. This
allows the user to easily aggregate data to a less granular level by taking the value from either the
beginning or end of the period.

Usage

as_period(
.tbl_time,
period = "year",
start_date = NULL,
side = "start",
include_endpoints = FALSE,
...

)
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Arguments

.tbl_time A tbl_time object.

period A character specification used for time-based grouping. The general format to
use is "frequency period" where frequency is a number like 1 or 2, and period
is an interval like weekly or yearly. There must be a space between the two.
Note that you can pass the specification in a flexible way:

• 1 Year: '1 year' / '1 Y'

This shorthand is available for year, quarter, month, day, hour, minute, second,
millisecond and microsecond periodicities.
Additionally, you have the option of passing in a vector of dates to use as custom
and more flexible boundaries.

start_date Optional argument used to specify the start date for the first group. The default
is to start at the closest period boundary below the minimum date in the supplied
index.

side Whether to return the date at the beginning or the end of the new period. By
default, the "start" of the period. Use "end" to change to the end of the period.

include_endpoints

Whether to include the first or last data point in addition to the transformed data.

... Not currently used.

Details

This function respects dplyr::group_by() groups.

The side argument is useful when you want to return data at, say, the end of a quarter, or the end
of a month.

include_endpoints can be useful when calculating a change over time. In addition to changing to
monthly dates, you often need the first data point as a baseline for the first calculation.

Examples

# Basic usage ---------------------------------------------------------------

# FB stock prices
data(FB)
FB <- as_tbl_time(FB, date)

# Aggregate FB to yearly data
as_period(FB, "year")

# Aggregate FB to every 2 years
as_period(FB, "2 years")

# Aggregate FB to yearly data, but use the last data point available
# in that period
as_period(FB, "year", side = "end")

# Aggregate FB to yearly data, end of period, and include the first
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# endpoint
as_period(FB, "year", side = "end", include_endpoints = TRUE)

# Aggregate to weekly. Notice that it only uses the earliest day available
# in the data set at that periodicity. It will not set the date of the first
# row to 2013-01-01 because that date did not exist in the original data set.
as_period(FB, "weekly")

# FB is daily data, aggregate to minute?
# Not allowed for Date class indices, an error is thrown
# as_period(FB, "minute")

# Grouped usage -------------------------------------------------------------

# FANG contains Facebook, Amazon, Netflix and Google stock prices
data(FANG)
FANG <- as_tbl_time(FANG, date)

FANG <- dplyr::group_by(FANG, symbol)

# Respects groups
as_period(FANG, "year")

# Every 6 months, respecting groups
as_period(FANG, "6 months")

# Using start_date ----------------------------------------------------------

#### One method using start_date

# FB stock prices
data(FB)
FB <- as_tbl_time(FB, date)

# The Facebook series starts at 2013-01-02 so the 'every 2 day' counter
# starts at that date as well. Groups become (2013-01-02, 2013-01-03),
# (2013-01-04, 2013-01-05) and so on.
as_period(FB, "2 day")

# Specifying the `start_date = "2013-01-01"` might be preferable.
# Groups become (2013-01-01, 2013-01-02), (2013-01-03, 2013-01-04) and so on.
as_period(FB, "2 day", start_date = "2013-01-01")

#### Equivalent method using an index vector

# FB stock prices
data(FB)
FB <- as_tbl_time(FB, date)

custom_period <- create_series(
time_formula = dplyr::first(FB$date) - 1 ~ dplyr::last(FB$date),
period = "2 day",
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class = "Date",
as_vector = TRUE)

FB %>%
as_tbl_time(date) %>%
as_period(period = custom_period)

# Manually calculating returns at different periods -------------------------

data(FB)

# Annual Returns
# Convert to end of year periodicity, but include the endpoints to use as
# a reference for the first return calculation. Then calculate returns.
FB %>%

as_tbl_time(date) %>%
as_period("1 y", side = "end", include_endpoints = TRUE) %>%
dplyr::mutate(yearly_return = adjusted / dplyr::lag(adjusted) - 1)

as_tbl_time Create tbl_time objects

Description

tbl_time objects have a time index that contains information about which column should be used
for time-based subsetting and other time-based manipulation. Otherwise, they function as normal
tibbles.

Usage

as_tbl_time(x, index = NULL, ...)

tbl_time(x, index = NULL)

Arguments

x An object to be converted to tbl_time. This is generally a tibble::tibble(),
or an object that can first be coerced to a tibble.

index The bare column name of the column to be used as the index.
... Arguments passed to tibble::as_tibble() if coercion is necessary first.

Details

The information stored about tbl_time objects are the index_quo and the index_time_zone.
These are stored as attributes, with the index_quo as a rlang::quosure() and the time_zone as
a string.

Currently, Date and POSIXct classes are fully supported. yearmon, yearqtr, and hms have exper-
imental support. Due to dplyr’s handling of S3 classes like these 3, the classes are lost when you
manipulate the index columns directly.
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Examples

# Converting a data.frame to a `tbl_time`
# Using Date index
ex1 <- data.frame(date = Sys.Date(), value = 1)
ex1_tbl_time <- as_tbl_time(ex1, date)
class(ex1_tbl_time)
attributes(ex1_tbl_time)

# Converting a tibble to a `tbl_time`
# Using POSIXct index
ex2 <- tibble::tibble(

time = as.POSIXct(c("2017-01-01 10:12:01", "2017-01-02 12:12:01")),
value = c(1, 2)

)
as_tbl_time(ex2, time)

ceiling_index A simple wrapper of lubridate::ceiling_date()

Description

This is a thin wrapper around a lubridate::ceiling_date() that works for hms, yearmon, and
yearqtr classes as well.

Usage

ceiling_index(x, unit = "seconds")

Arguments

x a vector of date-time objects

unit a string, Period object or a date-time object. When a singleton string, it specifies
a time unit or a multiple of a unit to be rounded to. Valid base units are second,
minute, hour, day, week, month, bimonth, quarter, season, halfyear and
year. Arbitrary unique English abbreviations as in the period() constructor
are allowed. Rounding to multiples of units (except weeks) is supported.
When unit is a Period object, it is first converted to a string representation
which might not be in the same units as the constructor. For example weeks(1)
is converted to "7d 0H 0M 0S". Thus, always check the string representation of
the period before passing to this function.
When unit is a date-time object rounding is done to the nearest of the elements
in unit. If range of unit vector does not cover the range of x ceiling_date()
and floor_date() round to the max(x) and min(x) for elements that fall out-
side of range(unit).
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See Also

lubridate::ceiling_date()

Examples

data(FB)
dplyr::mutate(FB, date2 = ceiling_index(date, "year"))

time_test <- create_series('00:00:00'~'12:00:00',
'1 minute', class = "hms")

dplyr::mutate(time_test, date2 = ceiling_index(date, "hour"))

collapse_by Collapse a tbl_time object by its index

Description

Collapse the index of a tbl_time object by time period. The index column is altered so that all
dates that fall in a specified interval share a common date.

Usage

collapse_by(
.tbl_time,
period = "year",
start_date = NULL,
side = "end",
clean = FALSE,
...

)

Arguments

.tbl_time A tbl_time object.

period A character specification used for time-based grouping. The general format to
use is "frequency period" where frequency is a number like 1 or 2, and period
is an interval like weekly or yearly. There must be a space between the two.
Note that you can pass the specification in a flexible way:

• 1 Year: '1 year' / '1 Y'

This shorthand is available for year, quarter, month, day, hour, minute, second,
millisecond and microsecond periodicities.
Additionally, you have the option of passing in a vector of dates to use as custom
and more flexible boundaries.



8 collapse_by

start_date Optional argument used to specify the start date for the first group. The default
is to start at the closest period boundary below the minimum date in the supplied
index.

side Whether to return the date at the beginning or the end of the new period. By
default, the "end" of the period. Use "start" to change to the start of the period.

clean Whether or not to round the collapsed index up / down to the next period bound-
ary. The decision to round up / down is controlled by the side argument.

... Not currently used.

Details

collapse_by() is a simplification of a call to dplyr::mutate() to collapse an index column using
collapse_index().

Examples

# Basic functionality -------------------------------------------------------

# Facebook stock prices
data(FB)
FB <- as_tbl_time(FB, date)

# Collapse to weekly dates
collapse_by(FB, "weekly")

# A common workflow is to group on the collapsed date column
# to perform a time based summary
FB %>%

collapse_by("year") %>%
dplyr::group_by(date) %>%
dplyr::summarise_if(is.numeric, mean)

# Grouped functionality -----------------------------------------------------

data(FANG)
FANG <- FANG %>%

as_tbl_time(date) %>%
dplyr::group_by(symbol)

# Collapse each group to monthly,
# calculate monthly standard deviation for each column
FANG %>%

collapse_by("month") %>%
dplyr::group_by(symbol, date) %>%
dplyr::summarise_all(sd)
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collapse_index Collapse an index vector so that all observations in an interval share
the same date

Description

When collapse_index() is used, the index vector is altered so that all dates that fall in a specified
interval share a common date. The most common use case for this is to then group on the collapsed
index.

Usage

collapse_index(
index,
period = "year",
start_date = NULL,
side = "end",
clean = FALSE,
...

)

Arguments

index An index vector.

period A character specification used for time-based grouping. The general format to
use is "frequency period" where frequency is a number like 1 or 2, and period
is an interval like weekly or yearly. There must be a space between the two.
Note that you can pass the specification in a flexible way:

• 1 Year: '1 year' / '1 Y'

This shorthand is available for year, quarter, month, day, hour, minute, second,
millisecond and microsecond periodicities.
Additionally, you have the option of passing in a vector of dates to use as custom
and more flexible boundaries.

start_date Optional argument used to specify the start date for the first group. The default
is to start at the closest period boundary below the minimum date in the supplied
index.

side Whether to return the date at the beginning or the end of the new period. By
default, the "end" of the period. Use "start" to change to the start of the period.

clean Whether or not to round the collapsed index up / down to the next period bound-
ary. The decision to round up / down is controlled by the side argument.

... Not currently used.
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Details

The collapse_by() function provides a shortcut for the most common use of collapse_index(),
calling the function inside a call to mutate() to modify the index directly. For more flexibility, like
the nesting example below, use collapse_index().

Because this is often used for end of period summaries, the default is to use side = "end". Note
that this is the opposite of as_period() where the default is side = "start".

The clean argument is especially useful if you have an irregular series and want cleaner dates to
report for summary values.

Examples

# Basic functionality -------------------------------------------------------

# Facebook stock prices
data(FB)
FB <- as_tbl_time(FB, date)

# Collapse to weekly dates
dplyr::mutate(FB, date = collapse_index(date, "weekly"))

# A common workflow is to group on the new date column
# to perform a time based summary
FB %>%

dplyr::mutate(date = collapse_index(date, "year")) %>%
dplyr::group_by(date) %>%
dplyr::summarise_if(is.numeric, mean)

# You can also assign the result to a separate column and use that
# to nest on, allowing for 'period nests' that keep the
# original dates in the nested tibbles.
FB %>%

dplyr::mutate(nest_date = collapse_index(date, "2 year")) %>%
dplyr::group_by(nest_date) %>%
tidyr::nest()

# Grouped functionality -----------------------------------------------------

data(FANG)
FANG <- FANG %>%

as_tbl_time(date) %>%
dplyr::group_by(symbol)

# Collapse each group to monthly,
# calculate monthly standard deviation for each column
FANG %>%

dplyr::mutate(date = collapse_index(date, "month")) %>%
dplyr::group_by(symbol, date) %>%
dplyr::summarise_all(sd)
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create_series Create a tbl_time object with a sequence of regularly spaced dates

Description

create_series() allows the user to quickly create a tbl_time object with a date column popu-
lated with a sequence of dates.

Usage

create_series(
time_formula,
period = "day",
class = "POSIXct",
include_end = FALSE,
tz = "UTC",
as_vector = FALSE

)

Arguments

time_formula A period to create the series over. This is specified as a formula. See the Details
section of filter_time() for more information.

period A character specification used for time-based grouping. The general format to
use is "frequency period" where frequency is a number like 1 or 2, and period
is an interval like weekly or yearly. There must be a space between the two.
Note that you can pass the specification in a flexible way:

• 1 Year: '1 year' / '1 Y'

This shorthand is available for year, quarter, month, day, hour, minute, second,
millisecond and microsecond periodicities.
Additionally, you have the option of passing in a vector of dates to use as custom
and more flexible boundaries.

class One of "Date", "POSIXct", "hms", "yearmon", "yearqtr". The default is
"POSIXct".

include_end Whether to always include the RHS of the time_formula even if it does not
match the regularly spaced index.

tz Time zone of the new series.

as_vector Should the series be returned as a vector instead of a tibble?

Examples

# Every day in 2013
create_series(~'2013', 'day')

# Every other day in 2013
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create_series(~'2013', '2 d')

# Every quarter in 2013
create_series(~'2013', '1 q')

# Daily series for 2013-2015
create_series('2013' ~ '2015', '1 d')

# Minute series for 2 months
create_series('2012-01' ~ '2012-02', 'M')

# Second series for 2 minutes
create_series('2011-01-01 12:10:00' ~ '2011-01-01 12:12:00', 's')

# Date class
create_series(~'2013', 'day', class = "Date")

# yearmon class
create_series(~'2013', 'month', class = "yearmon")

# hms class. time_formula specified as HH:MM:SS here
create_series('00:00:00' ~ '12:00:00', 'second' , class = "hms")

# Subsecond series
create_series('2013' ~ '2013-01-01 00:00:01', period = "10 millisec")
milli <- create_series('2013' ~ '2013-01-01 00:00:01', period = ".1 sec")
# Check that 'milli' is correct by running:
# options("digits.secs" = 4)
# options("digits" = 18)
# milli$date
# as.numeric(milli$date)

FANG Stock prices for Facebook, Amazon, Netflix and Google from 2013-
2016

Description

A dataset containing the date, open, high, low, close, volume, and adjusted stock prices for Face-
book, Amazon, Netflix and Google from 2013-2016.

Usage

FANG
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Format

A tibble with 4,032 rows and 8 variables:

symbol stock ticker symbol

date trade date

open stock price at the open of trading, in USD

high stock price at the highest point during trading, in USD

low stock price at the lowest point during trading, in USD

close stock price at the close of trading, in USD

volume number of shares traded

adjusted stock price at the close of trading adjusted for stock splits, in USD

Source

https://www.investopedia.com/terms/f/fang-stocks-fb-amzn.asp

FB Stock prices for Facebook from 2013-2016

Description

A dataset containing the date, open, high, low, close, volume, and adjusted stock prices for Facebook
from 2013-2016.

Usage

FB

Format

A tibble with 1,008 rows and 8 variables:

symbol stock ticker symbol

date trade date

open stock price at the open of trading, in USD

high stock price at the highest point during trading, in USD

low stock price at the lowest point during trading, in USD

close stock price at the close of trading, in USD

volume number of shares traded

adjusted stock price at the close of trading adjusted for stock splits, in USD

Source

https://www.investopedia.com/terms/f/fang-stocks-fb-amzn.asp

https://www.investopedia.com/terms/f/fang-stocks-fb-amzn.asp
https://www.investopedia.com/terms/f/fang-stocks-fb-amzn.asp
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filter_time Succinctly filter a tbl_time object by its index

Description

Use a concise filtering method to filter a tbl_time object by its index.

Usage

filter_time(.tbl_time, time_formula)

## S3 method for class 'tbl_time'
x[i, j, drop = FALSE]

Arguments

.tbl_time A tbl_time object.

time_formula A period to filter over. This is specified as a formula. See Details.

x Same as .tbl_time but consistent naming with base R.

i A period to filter over. This is specified the same as time_formula or can use
the traditional row extraction method.

j Optional argument to also specify column index to subset. Works exactly like
the normal extraction operator.

drop Will always be coerced to FALSE by tibble.

Details

The time_formula is specified using the format from ~ to. Each side of the time_formula is
specified as the character 'YYYY-MM-DD HH:MM:SS', but powerful shorthand is available. Some
examples are:

• Year: '2013' ~ '2015'

• Month: '2013-01' ~ '2016-06'

• Day: '2013-01-05' ~ '2016-06-04'

• Second: '2013-01-05 10:22:15' ~ '2018-06-03 12:14:22'

• Variations: '2013' ~ '2016-06'

The time_formula can also use a one sided formula.

• Only dates in 2015: ~'2015'
• Only dates March 2015: ~'2015-03'

The time_formula can also use 'start' and 'end' as keywords for your filter.

• Start of the series to end of 2015: 'start' ~ '2015'
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• Start of 2014 to end of series: '2014' ~ 'end'

All shorthand dates are expanded:

• The from side is expanded to be the first date in that period

• The to side is expanded to be the last date in that period

This means that the following examples are equivalent (assuming your index is a POSIXct):

• '2015' ~ '2016' == '2015-01-01 + 00:00:00' ~ '2016-12-31 + 23:59:59'

• ~'2015' == '2015-01-01 + 00:00:00' ~ '2015-12-31 + 23:59:59'

• '2015-01-04 + 10:12' ~ '2015-01-05' == '2015-01-04 + 10:12:00' ~ '2015-01-05 + 23:59:59'

Special parsing is done for indices of class hms. The from ~ to time formula is specified as only
HH:MM:SS.

• Start to 5th second of the 12th hour: 'start' ~ '12:00:05'

• Every second in the 12th hour: ~'12'

Subsecond resolution is also supported, however, R has a unique way of handling and printing
subsecond dates and the user should be comfortable with this already. Specify subsecond resolu-
tion like so: '2013-01-01 00:00:00.1' ~ '2013-01-01 00:00:00.2'. Note that one sided ex-
pansion does not work with subsecond resolution due to seconds and subseconds being grouped
together into 1 number (i.e. 1.2 seconds). This means ~'2013-01-01 00:00:00' does not expand
to something like '2013-01-01 00:00:00.00' ~ '2013-01-01 00:00:00.99', but only expands
to include whole seconds.

This function respects dplyr::group_by() groups.

Examples

# FANG contains Facebook, Amazon, Netflix and Google stock prices
data(FANG)
FANG <- as_tbl_time(FANG, date) %>%

dplyr::group_by(symbol)

# 2013-01-01 to 2014-12-31
filter_time(FANG, '2013' ~ '2014')

# 2013-05-25 to 2014-06-04
filter_time(FANG, '2013-05-25' ~ '2014-06-04')

# Using the `[` subset operator
FANG['2014'~'2015']

# Using `[` and one sided formula for only dates in 2014
FANG[~'2014']

# Using `[` and column selection
FANG['2013'~'2016', c("date", "adjusted")]

# Variables are unquoted using rlang
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lhs_date <- "2013"
rhs_date <- as.Date("2014-01-01")
filter_time(FANG, lhs_date ~ rhs_date)

# Use the keywords 'start' and 'end' to conveniently access ends
filter_time(FANG, 'start' ~ '2014')

# hms (hour, minute, second) classes have special parsing
hms_example <- create_series(~'12:01', 'second', class = 'hms')
filter_time(hms_example, 'start' ~ '12:01:30')

floor_index A simple wrapper of lubridate::floor_date()

Description

This is a thin wrapper around a lubridate::floor_date() that works for hms, yearmon, and
yearqtr classes as well.

Usage

floor_index(x, unit = "seconds")

Arguments

x a vector of date-time objects

unit a string, Period object or a date-time object. When a singleton string, it specifies
a time unit or a multiple of a unit to be rounded to. Valid base units are second,
minute, hour, day, week, month, bimonth, quarter, season, halfyear and
year. Arbitrary unique English abbreviations as in the period() constructor
are allowed. Rounding to multiples of units (except weeks) is supported.
When unit is a Period object, it is first converted to a string representation
which might not be in the same units as the constructor. For example weeks(1)
is converted to "7d 0H 0M 0S". Thus, always check the string representation of
the period before passing to this function.
When unit is a date-time object rounding is done to the nearest of the elements
in unit. If range of unit vector does not cover the range of x ceiling_date()
and floor_date() round to the max(x) and min(x) for elements that fall out-
side of range(unit).

See Also

lubridate::floor_date()
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Examples

data(FB)
dplyr::mutate(FB, date2 = floor_index(date, "year"))

time_test <- create_series('00:00:00'~'12:00:00',
'1 minute', class = "hms")

dplyr::mutate(time_test, date2 = floor_index(date, "hour"))

getters Getters

Description

Accessors to attributes of tbl_time objects.

Usage

get_index_quo(.tbl_time)

get_index_char(.tbl_time)

get_index_col(.tbl_time)

get_index_time_zone(.tbl_time)

get_index_class(.tbl_time)

Arguments

.tbl_time A tbl_time object.

new_tbl_time Create a new tbl_time object

Description

Often used internally by developers extending tibbletime

Usage

new_tbl_time(x, index_quo, index_time_zone, ..., subclass = NULL)
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Arguments

x A tibble or data.frame

index_quo The quo that references the index column

index_time_zone

The index time zone

... Other attributes passed through to new_tibble()

subclass A subclass to have as a child

parse_period Parse a character period specification

Description

The period is parsed into frequency and period and returned as a named list.

Usage

parse_period(period)

Arguments

period A character specification used for time-based grouping. The general format to
use is "frequency period" where frequency is a number like 1 or 2, and period
is an interval like weekly or yearly. There must be a space between the two.

Note that you can pass the specification in a flexible way:

• 1 Year: '1 year' / '1 Y'

This shorthand is available for year, quarter, month, day, hour, minute, second,
millisecond and microsecond periodicities.

Additionally, you have the option of passing in a vector of dates to use as custom
and more flexible boundaries.

Examples

parse_period('2 day')
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partition_index Partition an index vector into an integer vector representing groups

Description

partition_index() takes an index vector and returns an integer vector that can be used for group-
ing by periods. This is the workhorse for many other tibbletime functions.

Usage

partition_index(index, period = "year", start_date = NULL, ...)

Arguments

index A vector of date indices to create groups for.

period A character specification used for time-based grouping. The general format to
use is "frequency period" where frequency is a number like 1 or 2, and period
is an interval like weekly or yearly. There must be a space between the two.

Note that you can pass the specification in a flexible way:

• 1 Year: '1 year' / '1 Y'

This shorthand is available for year, quarter, month, day, hour, minute, second,
millisecond and microsecond periodicities.

Additionally, you have the option of passing in a vector of dates to use as custom
and more flexible boundaries.

start_date Optional argument used to specify the start date for the first group. The default
is to start at the closest period boundary below the minimum date in the supplied
index.

... Not currently used.

Details

This function is used internally, but may provide the user extra flexibility in some cases.

Grouping can only be done on the minimum periodicity of the index and above. This means that a
daily series cannot be grouped by minute. An hourly series cannot be grouped by 5 seconds, and so
on. If the user attempts this, an error will be thrown.

See Also

as_period(), collapse_index()
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Examples

data(FB)

partition_index(FB$date, '2 year')

dplyr::mutate(FB, partition_index = partition_index(date, '2 day'))

posixct_numeric_to_datetime

Converting a posixct numeric time back to a classed datetime

Description

Converting a posixct numeric time back to a classed datetime

Usage

posixct_numeric_to_datetime(x, class = "POSIXct", ..., tz = NULL)

Arguments

x A posixct numeric vector

class The class to convert to

... Extra arguments passed on the the specific coercion function

tz The time zone to convert to. The default UTC is used if none is supplied

reconstruct Reconstruct an S3 class from a template

Description

This is an implementation of sloop::reconstruct() that users can ignore. Once sloop is on
CRAN, this function will be removed and that version will be used. It currently must be exported
for use in tidyquant.

Usage

reconstruct(new, old)

Arguments

new Freshly created object

old Existing object to use as template



rollify 21

rollify Create a rolling version of any function

Description

rollify returns a rolling version of the input function, with a rolling window specified by the user.

Usage

rollify(.f, window = 1, unlist = TRUE, na_value = NULL)

Arguments

.f A function to modify, specified in one of the following ways:

• A named function, e.g. mean.
• An anonymous function, e.g. \(x) x + 1 or function(x) x + 1.
• A formula, e.g. ~ .x + 1. Only recommended if you require backward

compatibility with older versions of R.

window The window size to roll over

unlist If the function returns a single value each time it is called, use unlist = TRUE.
If the function returns more than one value, or a more complicated object (like a
linear model), use unlist = FALSE to create a list-column of the rolling results.

na_value A default value for the NA values at the beginning of the roll.

Details

The intended use of rollify is to turn a function into a rolling version of itself for use inside of a
call to dplyr::mutate(), however it works equally as well when called from purrr::map().

Because of it’s intended use with dplyr::mutate(), rollify creates a function that always returns
output with the same length of the input, aligned right, and filled with NA unless otherwise specified
by na_value.

The form of the .f argument is the same as the form that can be passed to purrr::map(). Use
.x or . to refer to the first object to roll over, and .y to refer to the second object if required. The
examples explain this further.

If optional arguments to the function are required, specify them in the call to rollify, and not in
the call to the rolling version of the function. See the examples for more details.

See Also

purrr::safely, purrr::possibly
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Examples

# Rolling mean --------------------------------------------------------------

data(FB)

# Turn the normal mean function into a rolling mean with a 5 row window
mean_roll_5 <- rollify(mean, window = 5)

dplyr::mutate(FB,
normal_mean = mean(adjusted),
rolling_mean = mean_roll_5(adjusted))

# There's nothing stopping you from combining multiple rolling functions with
# different window sizes in the same mutate call
mean_roll_10 <- rollify(mean, window = 10)

dplyr::mutate(FB,
rolling_mean_5 = mean_roll_5(adjusted),
rolling_mean_10 = mean_roll_10(adjusted))

# Functions with multiple args and optional args ----------------------------

# With 2 args, use the purrr syntax of ~ and .x, .y
# Rolling correlation example
cor_roll <- rollify(~cor(.x, .y), window = 5)

dplyr::mutate(FB, running_cor = cor_roll(adjusted, open))

# With >2 args, create an anonymous function with >2 args or use
# the purrr convention of ..1, ..2, ..3 to refer to the arguments
avg_of_avgs <- rollify(function(x, y, z) {

(mean(x) + mean(y) + mean(z)) / 3
},
window = 10)

# Or
avg_of_avgs <- rollify(~(mean(..1) + mean(..2) + mean(..3)) / 3,

window = 10)

dplyr::mutate(FB, avg_of_avgs = avg_of_avgs(open, high, low))

# Optional arguments MUST be passed at the creation of the rolling function
# Only data arguments that are "rolled over" are allowed when calling the
# rolling version of the function
FB$adjusted[1] <- NA

roll_mean_na_rm <- rollify(~mean(.x, na.rm = TRUE), window = 5)

dplyr::mutate(FB, roll_mean = roll_mean_na_rm(adjusted))

# Returning multiple values -------------------------------------------------
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data(FB)

summary2 <- function(x) {
unclass(summary(x))

}

# If the function returns >1 value, set the `unlist = FALSE` argument
# Running 5 number summary
summary_roll <- rollify(summary2, window = 5, unlist = FALSE)

FB_summarised <- dplyr::mutate(FB, summary_roll = summary_roll(adjusted))
FB_summarised$summary_roll[[5]]

# dplyr::bind_rows() is often helpful in these cases to get
# meaningful output

summary_roll <- rollify(~dplyr::bind_rows(summary2(.)), window = 5, unlist = FALSE)
FB_summarised <- dplyr::mutate(FB, summary_roll = summary_roll(adjusted))
FB_summarised %>%

dplyr::filter(!is.na(summary_roll)) %>%
tidyr::unnest(summary_roll)

# Rolling regressions -------------------------------------------------------

# Extending an example from R 4 Data Science on "Many Models".
# For each country in the gapminder data, calculate a linear regression
# every 5 periods of lifeExp ~ year
library(gapminder)

# Rolling regressions are easy to implement
lm_roll <- rollify(~lm(.x ~ .y), window = 5, unlist = FALSE)

gapminder %>%
dplyr::group_by(country) %>%
dplyr::mutate(rolling_lm = lm_roll(lifeExp, year))

# Rolling with groups -------------------------------------------------------

# One of the most powerful things about this is that it works with
# groups since `mutate` is being used
data(FANG)
FANG <- FANG %>%

dplyr::group_by(symbol)

mean_roll_3 <- rollify(mean, window = 3)

FANG %>%
dplyr::mutate(mean_roll = mean_roll_3(adjusted)) %>%
dplyr::slice(1:5)
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tibbletime tibbletime: time-aware tibbles

Description

Built on top of the ’tibble’ package, ’tibbletime’ is an extension that allows for the creation of
time aware tibbles. Some immediate advantages of this include: the ability to perform time based
subsetting on tibbles, quickly summarising and aggregating results by time periods, and calling
functions similar in spirit to the map family from ’purrr’ on time based tibbles.

Author(s)

Maintainer: Davis Vaughan <davis@posit.co>

Authors:

• Matt Dancho <mdancho@business-science.io>

See Also

Useful links:

• https://github.com/business-science/tibbletime

• Report bugs at https://github.com/business-science/tibbletime/issues

https://github.com/business-science/tibbletime
https://github.com/business-science/tibbletime/issues
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