
Package ‘targets’
December 4, 2024

Title Dynamic Function-Oriented 'Make'-Like Declarative Pipelines

Description Pipeline tools coordinate the pieces of computationally
demanding analysis projects.
The 'targets' package is a 'Make'-like pipeline tool for statistics and
data science in R. The package skips costly runtime for tasks
that are already up to date,
orchestrates the necessary computation with implicit parallel computing,
and abstracts files as R objects. If all the current output matches
the current upstream code and data, then the whole pipeline is up
to date, and the results are more trustworthy than otherwise.
The methodology in this package
borrows from GNU 'Make' (2015, ISBN:978-9881443519)
and 'drake' (2018, <doi:10.21105/joss.00550>).

Version 1.9.1

License MIT + file LICENSE

URL https://docs.ropensci.org/targets/,

https://github.com/ropensci/targets

BugReports https://github.com/ropensci/targets/issues

Depends R (>= 3.5.0)

Imports base64url (>= 1.4), callr (>= 3.7.0), cli (>= 2.0.2),
codetools (>= 0.2.16), data.table (>= 1.12.8), igraph (>=
2.0.0), knitr (>= 1.34), ps (>= 1.8.0), R6 (>= 2.4.1), rlang
(>= 1.0.0), secretbase (>= 0.5.0), stats, tibble (>= 3.0.1),
tidyselect (>= 1.1.0), tools, utils, vctrs (>= 0.2.4), yaml (>=
2.2.1)

Suggests autometric (>= 0.1.0), bslib, clustermq (>= 0.9.2), crew (>=
0.9.0), curl (>= 4.3), DT (>= 0.14), dplyr (>= 1.0.0), fst (>=
0.9.2), future (>= 1.19.1), future.batchtools (>= 0.9.0),
future.callr (>= 0.6.0), gargle (>= 1.2.0), googleCloudStorageR
(>= 0.7.0), gt (>= 0.2.2), keras (>= 2.2.5.0), markdown (>=
1.1), nanonext (>= 0.12.0), rmarkdown (>= 2.4), parallelly (>=
1.35.0), paws.common (>= 0.6.4), paws.storage (>= 0.4.0),
pkgload (>= 1.1.0), processx (>= 3.4.3), qs2, reprex (>=

1

https://doi.org/10.21105/joss.00550
https://docs.ropensci.org/targets/
https://github.com/ropensci/targets
https://github.com/ropensci/targets/issues

2 Contents

2.0.0), rstudioapi (>= 0.11), R.utils (>= 2.6.0), shiny (>=
1.5.0), shinybusy (>= 0.2.2), shinyWidgets (>= 0.5.4),
tarchetypes, testthat (>= 3.0.0), torch (>= 0.1.0), usethis (>=
1.6.3), visNetwork (>= 2.1.2)

Encoding UTF-8

Language en-US

VignetteBuilder knitr

Config/testthat/edition 3

RoxygenNote 7.3.2

NeedsCompilation no

Author William Michael Landau [aut, cre]
(<https://orcid.org/0000-0003-1878-3253>),

Matthew T. Warkentin [ctb],
Mark Edmondson [ctb] (<https://orcid.org/0000-0002-8434-3881>),
Samantha Oliver [rev] (<https://orcid.org/0000-0001-5668-1165>),
Tristan Mahr [rev] (<https://orcid.org/0000-0002-8890-5116>),
Eli Lilly and Company [cph, fnd]

Maintainer William Michael Landau <will.landau.oss@gmail.com>

Repository CRAN

Date/Publication 2024-12-04 12:40:02 UTC

Contents
targets-package . 5
tar_active . 5
tar_assert . 6
tar_backoff . 9
tar_branches . 10
tar_branch_index . 11
tar_branch_names . 12
tar_call . 13
tar_cancel . 14
tar_canceled . 15
tar_completed . 16
tar_condition . 17
tar_config_get . 18
tar_config_projects . 20
tar_config_set . 21
tar_config_unset . 25
tar_config_yaml . 27
tar_crew . 29
tar_cue . 30
tar_definition . 32
tar_delete . 34
tar_deps . 36

https://orcid.org/0000-0003-1878-3253
https://orcid.org/0000-0002-8434-3881
https://orcid.org/0000-0001-5668-1165
https://orcid.org/0000-0002-8890-5116

Contents 3

tar_described_as . 37
tar_destroy . 39
tar_dispatched . 42
tar_edit . 43
tar_engine_knitr . 43
tar_envir . 45
tar_envvars . 46
tar_errored . 48
tar_exist_meta . 49
tar_exist_objects . 50
tar_exist_process . 51
tar_exist_progress . 51
tar_exist_script . 52
tar_format . 53
tar_format_get . 56
tar_github_actions . 57
tar_glimpse . 58
tar_group . 61
tar_helper . 63
tar_interactive . 64
tar_invalidate . 65
tar_language . 66
tar_load . 67
tar_load_everything . 70
tar_load_globals . 71
tar_make . 73
tar_make_clustermq . 76
tar_make_future . 80
tar_manifest . 83
tar_mermaid . 86
tar_meta . 89
tar_meta_delete . 92
tar_meta_download . 94
tar_meta_sync . 95
tar_meta_upload . 97
tar_name . 99
tar_network . 100
tar_newer . 103
tar_noninteractive . 104
tar_objects . 105
tar_older . 106
tar_option_get . 108
tar_option_reset . 109
tar_option_set . 110
tar_outdated . 118
tar_path_script . 121
tar_path_script_support . 121
tar_path_store . 122

4 Contents

tar_path_target . 123
tar_pattern . 124
tar_pid . 126
tar_poll . 127
tar_process . 128
tar_progress . 130
tar_progress_branches . 131
tar_progress_summary . 133
tar_prune . 134
tar_prune_list . 137
tar_read . 138
tar_renv . 140
tar_repository_cas . 143
tar_repository_cas_local . 147
tar_repository_cas_local_gc . 150
tar_reprex . 152
tar_resources . 153
tar_resources_aws . 156
tar_resources_clustermq . 158
tar_resources_crew . 160
tar_resources_custom_format . 161
tar_resources_feather . 163
tar_resources_fst . 164
tar_resources_future . 165
tar_resources_gcp . 167
tar_resources_network . 168
tar_resources_parquet . 170
tar_resources_qs . 171
tar_resources_repository_cas . 173
tar_resources_url . 174
tar_script . 176
tar_seed_create . 177
tar_seed_get . 179
tar_seed_set . 180
tar_sitrep . 182
tar_skipped . 185
tar_source . 186
tar_target . 187
tar_test . 195
tar_timestamp . 196
tar_toggle . 197
tar_traceback . 198
tar_unblock_process . 200
tar_unscript . 200
tar_unversion . 201
tar_validate . 202
tar_visnetwork . 204
tar_watch . 207

targets-package 5

tar_watch_server . 211
tar_watch_ui . 212
tar_workspace . 214
tar_workspaces . 215
use_targets . 216
use_targets_rmd . 218

Index 219

targets-package targets: Dynamic Function-Oriented Make-Like Declarative Pipelines
for R

Description

A pipeline toolkit for Statistics and data science in R, the targets package brings function-oriented
programming to Make-like declarative pipelines. targets orchestrates a pipeline as a graph of
dependencies, skips steps that are already up to date, runs the necessary computations with optional
parallel workers, abstracts files as R objects, and provides tangible evidence that the results are
reproducible given the underlying code and data. The methodology in this package borrows from
GNU Make (2015, ISBN:978-9881443519) and drake (2018, doi:10.21105/joss.00550).

See Also

Other help: tar_reprex(), use_targets(), use_targets_rmd()

tar_active Show if the pipeline is running.

Description

Return TRUE if called in a target or _targets.R and the pipeline is running.

Usage

tar_active()

Value

Logical of length 1, TRUE if called in a target or _targets.R and the pipeline is running (FALSE
otherwise).

See Also

Other utilities: tar_backoff(), tar_call(), tar_cancel(), tar_definition(), tar_described_as(),
tar_envir(), tar_format_get(), tar_group(), tar_name(), tar_path(), tar_path_script(),
tar_path_script_support(), tar_path_store(), tar_path_target(), tar_source(), tar_store(),
tar_unblock_process()

https://doi.org/10.21105/joss.00550

6 tar_assert

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_active() # FALSE
tar_script({

library(targets)
library(tarchetypes)
message("Pipeline running? ", tar_active())
tar_target(x, tar_active())

})
tar_manifest() # prints "Pipeline running? FALSE"
tar_make() # prints "pipeline running? TRUE"
tar_read(x) # TRUE
})
}

tar_assert Assertions

Description

These functions assert the correctness of user inputs and generate custom error conditions as needed.
Useful for writing packages built on top of targets.

Usage

tar_assert_chr(x, msg = NULL)

tar_assert_dbl(x, msg = NULL)

tar_assert_df(x, msg = NULL)

tar_assert_equal_lengths(x, msg = NULL)

tar_assert_envir(x, msg = NULL)

tar_assert_expr(x, msg = NULL)

tar_assert_flag(x, choices, msg = NULL)

tar_assert_file(x)

tar_assert_finite(x, msg = NULL)

tar_assert_function(x, msg = NULL)

tar_assert_function_arguments(x, args, msg = NULL)

tar_assert 7

tar_assert_ge(x, threshold, msg = NULL)

tar_assert_identical(x, y, msg = NULL)

tar_assert_in(x, choices, msg = NULL)

tar_assert_not_dirs(x, msg = NULL)

tar_assert_not_dir(x, msg = NULL)

tar_assert_not_in(x, choices, msg = NULL)

tar_assert_inherits(x, class, msg = NULL)

tar_assert_int(x, msg = NULL)

tar_assert_internet(msg = NULL)

tar_assert_lang(x, msg = NULL)

tar_assert_le(x, threshold, msg = NULL)

tar_assert_list(x, msg = NULL)

tar_assert_lgl(x, msg = NULL)

tar_assert_name(x)

tar_assert_named(x, msg = NULL)

tar_assert_names(x, msg = NULL)

tar_assert_nonempty(x, msg = NULL)

tar_assert_null(x, msg = NULL)

tar_assert_not_expr(x, msg = NULL)

tar_assert_nzchar(x, msg = NULL)

tar_assert_package(package, msg = NULL)

tar_assert_path(path, msg = NULL)

tar_assert_match(x, pattern, msg = NULL)

tar_assert_nonmissing(x, msg = NULL)

8 tar_assert

tar_assert_positive(x, msg = NULL)

tar_assert_scalar(x, msg = NULL)

tar_assert_store(store)

tar_assert_target(x, msg = NULL)

tar_assert_target_list(x)

tar_assert_true(x, msg = NULL)

tar_assert_unique(x, msg = NULL)

tar_assert_unique_targets(x)

Arguments

x R object, input to be validated. The kind of object depends on the specific
assertion function called.

msg Character of length 1, a message to be printed to the console if x is invalid.

choices Character vector of choices of x for certain assertions.

args Character vector of expected function argument names. Order matters.

threshold Numeric of length 1, lower/upper bound for assertions like tar_assert_le()/tar_assert_ge().

y R object, value to compare against x.

class Character vector of expected class names.

package Character of length 1, name of an R package.

path Character, file path.

pattern Character of length 1, a grep pattern for certain assertions.

store Character of length 1, path to the data store of the pipeline.

See Also

Other utilities to extend targets: tar_condition, tar_language, tar_test()

Examples

tar_assert_chr("123")
try(tar_assert_chr(123))

tar_backoff 9

tar_backoff Superseded: exponential backoff

Description

Superseded: configure exponential backoff while polling for tasks during the pipeline.

Usage

tar_backoff(min = 0.001, max = 0.1, rate = 1.5)

Arguments

min Positive numeric of length 1, minimum polling interval in seconds. Must be at
least sqrt(.Machine$double.eps).

max Positive numeric of length 1, maximum polling interval in seconds. Must be at
least sqrt(.Machine$double.eps).

rate Positive numeric of length 1, greater than or equal to 1. Multiplicative rate
parameter that allows the exponential backoff minimum polling interval to in-
crease from min to max. Actual polling intervals are sampled uniformly from the
current minimum to max.

Details

This function is superseded and is now only relevant to other superseded functions tar_make_clustermq()
and tar_make_future(). tar_make() uses crew in an efficient non-polling way, making exponen-
tial backoff unnecessary.

Backoff

In high-performance computing it can be expensive to repeatedly poll the priority queue if no targets
are ready to process. The number of seconds between polls is runif(1, min, max(max, min * rate
^ index)), where index is the number of consecutive polls so far that found no targets ready to
skip or run, and min, max, and rate are arguments to tar_backoff(). (If no target is ready, index
goes up by 1. If a target is ready, index resets to 0. For more information on exponential, backoff,
visit https://en.wikipedia.org/wiki/Exponential_backoff). Raising min or max is kinder to
the CPU etc. but may incur delays in some instances.

See Also

Other utilities: tar_active(), tar_call(), tar_cancel(), tar_definition(), tar_described_as(),
tar_envir(), tar_format_get(), tar_group(), tar_name(), tar_path(), tar_path_script(),
tar_path_script_support(), tar_path_store(), tar_path_target(), tar_source(), tar_store(),
tar_unblock_process()

https://en.wikipedia.org/wiki/Exponential_backoff

10 tar_branches

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_option_set(backoff = tar_backoff(min = 0.001, max = 0.1, rate = 1.5))
})
}

tar_branches Reconstruct the branch names and the names of their dependencies.

Description

Given a branching pattern, use available metadata to reconstruct branch names and the names of
each branch’s dependencies. The metadata of each target must already exist and be consistent with
the metadata of the other targets involved.

Usage

tar_branches(
name,
pattern = NULL,
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

name Symbol, name of the target.

pattern Language to define branching for a target (just like in tar_target()) or NULL
to get the pattern from the targets pipeline script specified in the script argu-
ment (default: _targets.R).

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

tar_branch_index 11

Details

The results from this function can help you retroactively figure out correspondences between up-
stream branches and downstream branches. However, it does not always correctly predict what
the names of the branches will be after the next run of the pipeline. Dynamic branching happens
while the pipeline is running, so we cannot always know what the names of the branches will be in
advance (or even how many there will be).

Value

A tibble with one row per branch and one column for each target (including the branched-over
targets and the target with the pattern.)

See Also

Other branching: tar_branch_index(), tar_branch_names(), tar_pattern()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(x, seq_len(2)),
tar_target(y, head(letters, 2)),
tar_target(z, head(LETTERS, 2)),
tar_target(dynamic, c(x, y, z), pattern = cross(z, map(x, y)))

)
}, ask = FALSE)
tar_make()
tar_branches(dynamic)
tar_branches(dynamic, pattern = cross(z, map(x, y)))
})
}

tar_branch_index Integer branch indexes

Description

Get the integer indexes of individual branch names within their corresponding dynamic branching
targets.

Usage

tar_branch_index(names, store = targets::tar_config_get("store"))

12 tar_branch_names

Arguments

names Character vector of branch names.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A named integer vector of branch indexes.

See Also

Other branching: tar_branch_names(), tar_branches(), tar_pattern()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(x, seq_len(4)),
tar_target(y, 2 * x, pattern = map(x)),
tar_target(z, y, pattern = map(y))

)
}, ask = FALSE)
tar_make()
names <- c(

tar_meta(y, children)$children[[1]][c(2, 3)],
tar_meta(z, children)$children[[1]][2]

)
names
tar_branch_index(names) # c(2, 3, 2)
})
}

tar_branch_names Branch names

Description

Get the branch names of a dynamic branching target using numeric indexes. tar_branch_names()
expects an unevaluated symbol for the name argument, whereas tar_branch_names_raw() expects
a character string for name.

tar_call 13

Usage

tar_branch_names(name, index, store = targets::tar_config_get("store"))

tar_branch_names_raw(name, index, store = targets::tar_config_get("store"))

Arguments

name Name of the dynamic branching target. tar_branch_names() expects an un-
evaluated symbol for the name argument, whereas tar_branch_names_raw()
expects a character string for name.

index Integer vector of branch indexes.

store Character string, directory path to the targets data store of the pipeline.

Value

A character vector of branch names.

See Also

Other branching: tar_branch_index(), tar_branches(), tar_pattern()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(x, seq_len(4)),
tar_target(y, 2 * x, pattern = map(x)),
tar_target(z, y, pattern = map(y))

)
}, ask = FALSE)
tar_make()
tar_branch_names(z, c(2, 3))
})
}

tar_call Identify the called targets function.

Description

Get the name of the currently running targets interface function. Returns NULL if not invoked
inside a target or _targets.R (i.e. if not directly invoked by tar_make(), tar_visnetwork(),
etc.).

14 tar_cancel

Usage

tar_call()

Value

Character of length 1, name of the currently running targets interface function. For example,
suppose you have a call to tar_call() inside a target or _targets.R. Then if you run tar_make(),
tar_call() will return "tar_make".

See Also

Other utilities: tar_active(), tar_backoff(), tar_cancel(), tar_definition(), tar_described_as(),
tar_envir(), tar_format_get(), tar_group(), tar_name(), tar_path(), tar_path_script(),
tar_path_script_support(), tar_path_store(), tar_path_target(), tar_source(), tar_store(),
tar_unblock_process()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_call() # NULL
tar_script({

library(targets)
library(tarchetypes)
message("called function: ", tar_call())
tar_target(x, tar_call())

})
tar_manifest() # prints "called function: tar_manifest"
tar_make() # prints "called function: tar_make"
tar_read(x) # "tar_make"
})
}

tar_cancel Cancel a target mid-execution under a custom condition.

Description

Cancel a target while its command is running if a condition is met.

Usage

tar_cancel(condition = TRUE)

Arguments

condition Logical of length 1, whether to cancel the target.

tar_canceled 15

Details

Must be invoked by the target itself. tar_cancel() cannot interrupt a target from another process.

See Also

Other utilities: tar_active(), tar_backoff(), tar_call(), tar_definition(), tar_described_as(),
tar_envir(), tar_format_get(), tar_group(), tar_name(), tar_path(), tar_path_script(),
tar_path_script_support(), tar_path_store(), tar_path_target(), tar_source(), tar_store(),
tar_unblock_process()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script(tar_target(x, tar_cancel(1 > 0)))
tar_make() # Should cancel target x.
})
}

tar_canceled List canceled targets.

Description

List targets whose progress is "canceled".

Usage

tar_canceled(names = NULL, store = targets::tar_config_get("store"))

Arguments

names Optional, names of the targets. If supplied, the output is restricted to the selected
targets. The object supplied to names should be NULL or a tidyselect expres-
sion like any_of() or starts_with() from tidyselect itself, or tar_described_as()
to select target names based on their descriptions.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A character vector of canceled targets.

16 tar_completed

See Also

Other progress: tar_completed(), tar_dispatched(), tar_errored(), tar_poll(), tar_progress(),
tar_progress_branches(), tar_progress_summary(), tar_skipped(), tar_watch(), tar_watch_server(),
tar_watch_ui()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_canceled()
tar_canceled(starts_with("y_")) # see also any_of()
})
}

tar_completed List completed targets.

Description

List targets whose progress is "completed".

Usage

tar_completed(names = NULL, store = targets::tar_config_get("store"))

Arguments

names Optional, names of the targets. If supplied, the output is restricted to the selected
targets. The object supplied to names should be NULL or a tidyselect expres-
sion like any_of() or starts_with() from tidyselect itself, or tar_described_as()
to select target names based on their descriptions.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A character vector of completed targets.

tar_condition 17

See Also

Other progress: tar_canceled(), tar_dispatched(), tar_errored(), tar_poll(), tar_progress(),
tar_progress_branches(), tar_progress_summary(), tar_skipped(), tar_watch(), tar_watch_server(),
tar_watch_ui()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_completed()
tar_completed(starts_with("y_")) # see also any_of()
})
}

tar_condition Conditions

Description

These functions throw custom targets-specific error conditions. Useful for error handling in pack-
ages built on top of targets.

Usage

tar_message_run(...)

tar_throw_file(...)

tar_throw_run(..., class = character(0))

tar_throw_validate(...)

tar_warn_deprecate(...)

tar_warn_run(...)

tar_warn_validate(...)

tar_message_validate(...)

18 tar_config_get

tar_print(...)

tar_error(message, class)

tar_warning(message, class)

tar_message(message, class)

Arguments

... zero or more objects which can be coerced to character (and which are pasted
together with no separator) or a single condition object.

class Character vector of S3 classes of the message.

message Character of length 1, text of the message.

See Also

Other utilities to extend targets: tar_assert, tar_language, tar_test()

Examples

try(tar_throw_validate("something is not valid"))

tar_config_get Get configuration settings.

Description

Read the custom settings for the current project in the optional YAML configuration file.

Usage

tar_config_get(
name,
config = Sys.getenv("TAR_CONFIG", "_targets.yaml"),
project = Sys.getenv("TAR_PROJECT", "main")

)

Arguments

name Character of length 1, name of the specific configuration setting to retrieve.

config Character of length 1, file path of the YAML configuration file with targets
project settings. The config argument specifies which YAML configuration file
that tar_config_get() reads from or tar_config_set() writes to in a sin-
gle function call. It does not globally change which configuration file is used
in subsequent function calls. The default file path of the YAML file is always

tar_config_get 19

_targets.yaml unless you set another default path using the TAR_CONFIG envi-
ronment variable, e.g. Sys.setenv(TAR_CONFIG = "custom.yaml"). This also
has the effect of temporarily modifying the default arguments to other functions
such as tar_make() because the default arguments to those functions are con-
trolled by tar_config_get().

project Character of length 1, name of the current targets project. Thanks to the
config R package, targets YAML configuration files can store multiple sets
of configuration settings, with each set corresponding to its own project. The
project argument allows you to set or get a configuration setting for a spe-
cific project for a given call to tar_config_set() or tar_config_get(). The
default project is always called "main" unless you set another default project
using the TAR_PROJECT environment variable, e.g. Sys.setenv(tar_project
= "custom"). This also has the effect of temporarily modifying the default ar-
guments to other functions such as tar_make() because the default arguments
to those functions are controlled by tar_config_get().

Value

The value of the configuration setting from the YAML configuration file (default: _targets.yaml)
or the default value if the setting is not available. The data type of the return value depends on your
choice of name.

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

Configuration

For several key functions like tar_make(), the default values of arguments are controlled though
tar_config_get(). tar_config_get() retrieves data from an optional YAML configuration file.
You can control the settings in the YAML file programmatically with tar_config_set(). The
default file path of this YAML file is _targets.yaml, and you can set another path globally using
the TAR_CONFIG environment variable. The YAML file can store configuration settings for multiple
projects, and you can globally set the default project with the TAR_PROJECT environment variable.
The structure of the YAML file follows rules similar to the config R package, e.g. projects can
inherit settings from one another using the inherits field. Exceptions include:

1. There is no requirement to have a configuration named "default".

2. Other projects do not inherit from the default project‘ automatically.

3. Not all fields need values because targets already has defaults.

targets does not actually invoke the config package. The implementation in targets was written
from scratch without viewing or copying any part of the source code of config.

20 tar_config_projects

See Also

Other configuration: tar_config_projects(), tar_config_set(), tar_config_unset(), tar_config_yaml(),
tar_envvars(), tar_option_get(), tar_option_reset(), tar_option_set()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script(list(tar_target(x, 1 + 1)))
tar_config_get("store") # "_targets"
store_path <- tempfile()
tar_config_set(store = store_path)
tar_config_get("store") # Shows a temp file.
tar_make() # Writes to the custom data store identified in _targets.yaml.
tar_read(x) # tar_read() knows about _targets.yaml too.
file.exists("_targets") # FALSE
file.exists(store_path) # TRUE
})
}

tar_config_projects List projects.

Description

List the names of projects defined in _targets.yaml.

Usage

tar_config_projects(config = Sys.getenv("TAR_CONFIG", "_targets.yaml"))

Arguments

config Character of length 1, file path of the YAML configuration file with targets
project settings. The config argument specifies which YAML configuration file
that tar_config_get() reads from or tar_config_set() writes to in a sin-
gle function call. It does not globally change which configuration file is used
in subsequent function calls. The default file path of the YAML file is always
_targets.yaml unless you set another default path using the TAR_CONFIG envi-
ronment variable, e.g. Sys.setenv(TAR_CONFIG = "custom.yaml"). This also
has the effect of temporarily modifying the default arguments to other functions
such as tar_make() because the default arguments to those functions are con-
trolled by tar_config_get().

Value

Character vector of names of projects defined in _targets.yaml.

tar_config_set 21

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

Configuration

For several key functions like tar_make(), the default values of arguments are controlled though
tar_config_get(). tar_config_get() retrieves data from an optional YAML configuration file.
You can control the settings in the YAML file programmatically with tar_config_set(). The
default file path of this YAML file is _targets.yaml, and you can set another path globally using
the TAR_CONFIG environment variable. The YAML file can store configuration settings for multiple
projects, and you can globally set the default project with the TAR_PROJECT environment variable.
The structure of the YAML file follows rules similar to the config R package, e.g. projects can
inherit settings from one another using the inherits field. Exceptions include:

1. There is no requirement to have a configuration named "default".

2. Other projects do not inherit from the default project‘ automatically.

3. Not all fields need values because targets already has defaults.

targets does not actually invoke the config package. The implementation in targets was written
from scratch without viewing or copying any part of the source code of config.

See Also

Other configuration: tar_config_get(), tar_config_set(), tar_config_unset(), tar_config_yaml(),
tar_envvars(), tar_option_get(), tar_option_reset(), tar_option_set()

Examples

yaml <- tempfile()
tar_config_set(store = "my_store_a", config = yaml, project = "project_a")
tar_config_set(store = "my_store_b", config = yaml, project = "project_b")
tar_config_projects(config = yaml)

tar_config_set Set configuration settings.

Description

tar_config_set() writes special custom settings for the current project to an optional YAML
configuration file.

22 tar_config_set

Usage

tar_config_set(
inherits = NULL,
as_job = NULL,
garbage_collection = NULL,
label = NULL,
label_width = NULL,
level_separation = NULL,
reporter_make = NULL,
reporter_outdated = NULL,
script = NULL,
seconds_meta_append = NULL,
seconds_meta_upload = NULL,
seconds_reporter = NULL,
seconds_interval = NULL,
store = NULL,
shortcut = NULL,
use_crew = NULL,
workers = NULL,
config = Sys.getenv("TAR_CONFIG", "_targets.yaml"),
project = Sys.getenv("TAR_PROJECT", "main")

)

Arguments

inherits Character of length 1, name of the project from which the current project should
inherit configuration settings. The current project is the project argument,
which defaults to Sys.getenv("TAR_PROJECT", "main"). If the inherits ar-
gument NULL, the inherits setting is not modified. Use tar_config_unset()
to delete a setting.

as_job Logical of length 1, as_job argument of tar_make(). TRUE to run as an RStudio
IDE / Posit Workbench job, FALSE to run as a callr process in the main R
session (depending on the callr_function argument). If as_job_ is TRUE,
then the rstudioapi package must be installed.

garbage_collection

Deprecated. Use the garbage_collection argument of tar_option_set()
instead to run garbage collection at regular intervals in a pipeline, or use the
argument of the same name in tar_target() to activate garbage collection for
a specific target.

label Argument of tar_glimpse() and tar_visnetwork() to control node labels.

label_width Argument of tar_glimpse() and tar_visnetwork() to control the maximum
width (number of characters wide) of the node labels.

level_separation

Argument of tar_visnetwork() and tar_glimpse() to control the space be-
tween hierarchical levels.

reporter_make Character of length 1, reporter argument to tar_make() and related functions
that run the pipeline. If the argument NULL, the setting is not modified. Use

tar_config_set 23

tar_config_unset() to delete a setting.
reporter_outdated

Character of length 1, reporter argument to tar_outdated() and related func-
tions that do not run the pipeline. If the argument NULL, the setting is not modi-
fied. Use tar_config_unset() to delete a setting.

script Character of length 1, path to the target script file that defines the pipeline
(_targets.R by default). This path should be either an absolute path or a path
relative to the project root where you will call tar_make() and other functions.
When tar_make() and friends run the script from the current working directory.
If the argument NULL, the setting is not modified. Use tar_config_unset() to
delete a setting.

seconds_meta_append

Argument of tar_make(), tar_make_clustermq(), and tar_make_future().
Positive numeric of length 1 with the minimum number of seconds between
saves to the local metadata and progress files in the data store. Higher values
generally make the pipeline run faster, but unsaved work (in the event of a crash)
is not up to date. When the pipeline ends, all the metadata and progress data is
saved immediately, regardless of seconds_meta_append.

seconds_meta_upload

Argument of tar_make(), tar_make_clustermq(), and tar_make_future().
Positive numeric of length 1 with the minimum number of seconds between
uploads of the metadata and progress data to the cloud (see https://books.
ropensci.org/targets/cloud-storage.html). Higher values generally make
the pipeline run faster, but unsaved work (in the event of a crash) may not be
backed up to the cloud. When the pipeline ends, all the metadata and progress
data is uploaded immediately, regardless of seconds_meta_upload.

seconds_reporter

Argument of tar_make(), tar_make_clustermq(), and tar_make_future().
Positive numeric of length 1 with the minimum number of seconds between
times when the reporter prints progress messages to the R console.

seconds_interval

Deprecated on 2023-08-24 (version 1.2.2.9001). Use seconds_meta_append,
seconds_meta_upload, and seconds_reporter instead.

store Character of length 1, path to the data store of the pipeline. If NULL, the store
setting is left unchanged in the YAML configuration file (default: _targets.yaml).
Usually, the data store lives at _targets. Set store to a custom directory to
specify a path other than _targets/. The path need not exist before the pipeline
begins, and it need not end with "_targets", but it must be writeable. For opti-
mal performance, choose a storage location with fast read/write access. If the
argument NULL, the setting is not modified. Use tar_config_unset() to delete
a setting.

shortcut logical of length 1, default shortcut argument to tar_make() and related func-
tions. If the argument NULL, the setting is not modified. Use tar_config_unset()
to delete a setting.

use_crew Logical of length 1, whether to use crew in tar_make() if the controller op-
tion is set in tar_option_set() in the target script (_targets.R). See https:
//books.ropensci.org/targets/crew.html for details.

https://books.ropensci.org/targets/cloud-storage.html
https://books.ropensci.org/targets/cloud-storage.html
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html

24 tar_config_set

workers Positive numeric of length 1, workers argument of tar_make_clustermq()
and related functions that run the pipeline with parallel computing among tar-
gets. If the argument NULL, the setting is not modified. Use tar_config_unset()
to delete a setting.

config Character of length 1, file path of the YAML configuration file with targets
project settings. The config argument specifies which YAML configuration file
that tar_config_get() reads from or tar_config_set() writes to in a sin-
gle function call. It does not globally change which configuration file is used
in subsequent function calls. The default file path of the YAML file is always
_targets.yaml unless you set another default path using the TAR_CONFIG envi-
ronment variable, e.g. Sys.setenv(TAR_CONFIG = "custom.yaml"). This also
has the effect of temporarily modifying the default arguments to other functions
such as tar_make() because the default arguments to those functions are con-
trolled by tar_config_get().

project Character of length 1, name of the current targets project. Thanks to the
config R package, targets YAML configuration files can store multiple sets
of configuration settings, with each set corresponding to its own project. The
project argument allows you to set or get a configuration setting for a spe-
cific project for a given call to tar_config_set() or tar_config_get(). The
default project is always called "main" unless you set another default project
using the TAR_PROJECT environment variable, e.g. Sys.setenv(tar_project
= "custom"). This also has the effect of temporarily modifying the default ar-
guments to other functions such as tar_make() because the default arguments
to those functions are controlled by tar_config_get().

Value

NULL (invisibly)

Configuration

For several key functions like tar_make(), the default values of arguments are controlled though
tar_config_get(). tar_config_get() retrieves data from an optional YAML configuration file.
You can control the settings in the YAML file programmatically with tar_config_set(). The
default file path of this YAML file is _targets.yaml, and you can set another path globally using
the TAR_CONFIG environment variable. The YAML file can store configuration settings for multiple
projects, and you can globally set the default project with the TAR_PROJECT environment variable.
The structure of the YAML file follows rules similar to the config R package, e.g. projects can
inherit settings from one another using the inherits field. Exceptions include:

1. There is no requirement to have a configuration named "default".

2. Other projects do not inherit from the default project‘ automatically.

3. Not all fields need values because targets already has defaults.

targets does not actually invoke the config package. The implementation in targets was written
from scratch without viewing or copying any part of the source code of config.

tar_config_unset 25

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other configuration: tar_config_get(), tar_config_projects(), tar_config_unset(), tar_config_yaml(),
tar_envvars(), tar_option_get(), tar_option_reset(), tar_option_set()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script(list(tar_target(x, 1 + 1)))
tar_config_get("store") # NULL (data store defaults to "_targets/")
store_path <- tempfile()
tar_config_set(store = store_path)
tar_config_get("store") # Shows a temp file.
tar_make() # Writes to the custom data store identified in _targets.yaml.
tar_read(x) # tar_read() knows about _targets.yaml too.
file.exists("_targets") # FALSE
file.exists(store_path) # TRUE
})
}

tar_config_unset Unset configuration settings.

Description

Unset (i.e. delete) one or more custom settings for the current project from the optional YAML
configuration file. After that, tar_option_get() will return the original default values for those
settings for the project.

Usage

tar_config_unset(
names = character(0),
config = Sys.getenv("TAR_CONFIG", "_targets.yaml"),
project = Sys.getenv("TAR_PROJECT", "main")

)

26 tar_config_unset

Arguments

names Character vector of configuration settings to delete from the current project.

config Character of length 1, file path of the YAML configuration file with targets
project settings. The config argument specifies which YAML configuration file
that tar_config_get() reads from or tar_config_set() writes to in a sin-
gle function call. It does not globally change which configuration file is used
in subsequent function calls. The default file path of the YAML file is always
_targets.yaml unless you set another default path using the TAR_CONFIG envi-
ronment variable, e.g. Sys.setenv(TAR_CONFIG = "custom.yaml"). This also
has the effect of temporarily modifying the default arguments to other functions
such as tar_make() because the default arguments to those functions are con-
trolled by tar_config_get().

project Character of length 1, name of the current targets project. Thanks to the
config R package, targets YAML configuration files can store multiple sets
of configuration settings, with each set corresponding to its own project. The
project argument allows you to set or get a configuration setting for a spe-
cific project for a given call to tar_config_set() or tar_config_get(). The
default project is always called "main" unless you set another default project
using the TAR_PROJECT environment variable, e.g. Sys.setenv(tar_project
= "custom"). This also has the effect of temporarily modifying the default ar-
guments to other functions such as tar_make() because the default arguments
to those functions are controlled by tar_config_get().

Value

NULL (invisibly)

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

Configuration

For several key functions like tar_make(), the default values of arguments are controlled though
tar_config_get(). tar_config_get() retrieves data from an optional YAML configuration file.
You can control the settings in the YAML file programmatically with tar_config_set(). The
default file path of this YAML file is _targets.yaml, and you can set another path globally using
the TAR_CONFIG environment variable. The YAML file can store configuration settings for multiple
projects, and you can globally set the default project with the TAR_PROJECT environment variable.
The structure of the YAML file follows rules similar to the config R package, e.g. projects can
inherit settings from one another using the inherits field. Exceptions include:

1. There is no requirement to have a configuration named "default".

tar_config_yaml 27

2. Other projects do not inherit from the default project‘ automatically.

3. Not all fields need values because targets already has defaults.

targets does not actually invoke the config package. The implementation in targets was written
from scratch without viewing or copying any part of the source code of config.

See Also

Other configuration: tar_config_get(), tar_config_projects(), tar_config_set(), tar_config_yaml(),
tar_envvars(), tar_option_get(), tar_option_reset(), tar_option_set()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script(list(tar_target(x, 1 + 1)))
tar_config_get("store") # "_targets"
store_path <- tempfile()
tar_config_set(store = store_path)
tar_config_get("store") # Shows a temp file.
tar_config_unset("store")
tar_config_get("store") # _targets
})
}

tar_config_yaml Read _targets.yaml.

Description

Read the YAML content of _targets.yaml.

Usage

tar_config_yaml(config = Sys.getenv("TAR_CONFIG", "_targets.yaml"))

Arguments

config Character of length 1, file path of the YAML configuration file with targets
project settings. The config argument specifies which YAML configuration file
that tar_config_get() reads from or tar_config_set() writes to in a sin-
gle function call. It does not globally change which configuration file is used
in subsequent function calls. The default file path of the YAML file is always
_targets.yaml unless you set another default path using the TAR_CONFIG envi-
ronment variable, e.g. Sys.setenv(TAR_CONFIG = "custom.yaml"). This also
has the effect of temporarily modifying the default arguments to other functions
such as tar_make() because the default arguments to those functions are con-
trolled by tar_config_get().

28 tar_config_yaml

Value

Nested list of fields defined in _targets.yaml.

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

Configuration

For several key functions like tar_make(), the default values of arguments are controlled though
tar_config_get(). tar_config_get() retrieves data from an optional YAML configuration file.
You can control the settings in the YAML file programmatically with tar_config_set(). The
default file path of this YAML file is _targets.yaml, and you can set another path globally using
the TAR_CONFIG environment variable. The YAML file can store configuration settings for multiple
projects, and you can globally set the default project with the TAR_PROJECT environment variable.
The structure of the YAML file follows rules similar to the config R package, e.g. projects can
inherit settings from one another using the inherits field. Exceptions include:

1. There is no requirement to have a configuration named "default".

2. Other projects do not inherit from the default project‘ automatically.

3. Not all fields need values because targets already has defaults.

targets does not actually invoke the config package. The implementation in targets was written
from scratch without viewing or copying any part of the source code of config.

See Also

Other configuration: tar_config_get(), tar_config_projects(), tar_config_set(), tar_config_unset(),
tar_envvars(), tar_option_get(), tar_option_reset(), tar_option_set()

Examples

yaml <- tempfile()
tar_config_set(store = "my_store_a", config = yaml, project = "project_a")
tar_config_set(store = "my_store_b", config = yaml, project = "project_b")
str(tar_config_yaml(config = yaml))

tar_crew 29

tar_crew Get crew worker info.

Description

For the most recent run of the pipeline with tar_make() where a crew controller was started, get
summary-level information of the workers.

Usage

tar_crew(store = targets::tar_config_get("store"))

Arguments

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A data frame one row per crew worker and the following columns:

• controller: name of the crew controller.

• launches: number of times the worker was launched.

• seconds: number of seconds the worker spent running tasks.

• targets: number of targets the worker completed and delivered.

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other data: tar_pid(), tar_process()

30 tar_cue

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
if (requireNamespace("crew", quietly = TRUE)) {
tar_script({

library(targets)
library(tarchetypes)
tar_option_set(controller = crew::crew_controller_local())
list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_process()
tar_process(pid)
}
})
}

tar_cue Declare the rules that cue a target.

Description

Declare the rules that mark a target as outdated.

Usage

tar_cue(
mode = c("thorough", "always", "never"),
command = TRUE,
depend = TRUE,
format = TRUE,
repository = TRUE,
iteration = TRUE,
file = TRUE,
seed = TRUE

)

Arguments

mode Cue mode. If "thorough", all the cues apply unless individually suppressed. If
"always", then the target always runs. If "never", then the target does not run
unless the metadata does not exist or the last run errored.

command Logical, whether to rerun the target if command changed since last time.

depend Logical, whether to rerun the target if the value of one of the dependencies
changed.

tar_cue 31

format Logical, whether to rerun the target if the user-specified storage format changed.
The storage format is user-specified through tar_target() or tar_option_set().

repository Logical, whether to rerun the target if the user-specified storage repository changed.
The storage repository is user-specified through tar_target() or tar_option_set().

iteration Logical, whether to rerun the target if the user-specified iteration method changed.
The iteration method is user-specified through tar_target() or tar_option_set().

file Logical, whether to rerun the target if the file(s) with the return value changed
or at least one is missing.

seed Logical, whether to rerun the target if pseudo-random number generator seed
either changed or is NA. The reproducible deterministic target-specific seeds are
controlled by tar_option_get("seed") and the target names. See tar_option_set()
for details.

Target invalidation rules

targets uses internal metadata and special cues to decide whether a target is up to date (can skip)
or is outdated/invalidated (needs to rerun). By default, targets moves through the following list of
cues and declares a target outdated if at least one is cue activated.

1. There is no metadata record of the target.

2. The target errored last run.

3. The target has a different class than it did before.

4. The cue mode equals "always".

5. The cue mode does not equal "never".

6. The command metadata field (the hash of the R command) is different from last time.

7. The depend metadata field (the hash of the immediate upstream dependency targets and global
objects) is different from last time.

8. The storage format is different from last time.

9. The iteration mode is different from last time.

10. A target’s file (either the one in _targets/objects/ or a dynamic file) does not exist or
changed since last time.

The user can suppress many of the above cues using the tar_cue() function, which creates the cue
argument of tar_target(). Cues objects also constitute more nuanced target invalidation rules.
The tarchetypes package has many such examples, including tar_age(), tar_download(),
tar_cue_age(), tar_cue_force(), and tar_cue_skip().

Dependency-based invalidation and user-defined functions

If the cue of a target has depend = TRUE (default) then the target is marked invalidated/outdated
when its upstream dependencies change. A target’s dependencies include upstream targets, user-
defined functions, and other global objects populated in the target script file (default: _targets.R).
To determine if a given dependency changed since the last run of the pipeline, targets computes
hashes. The hash of a target is computed on its files in storage (usually a file in _targets/objects/).
The hash of a non-function global object dependency is computed directly on its in-memory data.
User-defined functions are hashed in the following way:

32 tar_definition

1. Deparse the function with targets:::tar_deparse_safe(). This function computes a string
representation of the function body and arguments. This string representation is invariant to
changes in comments and whitespace, which means trivial changes to formatting do not cue
targets to rerun.

2. Manually remove any literal pointers from the function string using targets:::mask_pointers().
Such pointers arise from inline compiled C/C++ functions.

3. Using static code analysis (i.e. tar_deps(), which is based on codetools::findGlobals())
identify any user-defined functions and global objects that the current function depends on.
Append the hashes of those dependencies to the string representation of the current function.

4. Compute the hash of the final string representation using targets:::hash_object().

Above, (3) is important because user-defined functions have dependencies of their own, such as
other user-defined functions and other global objects. (3) ensures that a change to a function’s
dependencies invalidates the function itself, which in turn invalidates any calling functions and any
targets downstream with the depend cue turned on.

See Also

Other targets: tar_target()

Examples

The following target will always run when the pipeline runs.
x <- tar_target(x, download_data(), cue = tar_cue(mode = "always"))

tar_definition For developers only: get the definition of the current target.

Description

For developers only: get the full definition of the target currently running. This target definition is
the same kind of object produced by tar_target().

Usage

tar_definition(
default = targets::tar_target_raw("target_name", quote(identity()))

)

Arguments

default Environment, value to return if tar_definition() is called on its own outside
a targets pipeline. Having a default lets users run things without tar_make(),
which helps peel back layers of code and troubleshoot bugs.

tar_definition 33

Details

Most users should not use tar_definition() because accidental modifications could break the
pipeline. tar_definition() only exists in order to support third-party interface packages, and
even then the returned target definition is not modified..

Value

If called from a running target, tar_definition() returns the target object of the currently running
target. See the "Target objects" section for details.

Target objects

Functions like tar_target() produce target objects, special objects with specialized sets of S3
classes. Target objects represent skippable steps of the analysis pipeline as described at https:
//books.ropensci.org/targets/. Please read the walkthrough at https://books.ropensci.
org/targets/walkthrough.html to understand the role of target objects in analysis pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other utilities: tar_active(), tar_backoff(), tar_call(), tar_cancel(), tar_described_as(),
tar_envir(), tar_format_get(), tar_group(), tar_name(), tar_path(), tar_path_script(),
tar_path_script_support(), tar_path_store(), tar_path_target(), tar_source(), tar_store(),
tar_unblock_process()

Examples

class(tar_definition())
tar_definition()$name
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script(

tar_target(x, tar_definition()$settings$memory, memory = "transient")
)
tar_make(x)
tar_read(x)
})
}

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

34 tar_delete

tar_delete Delete target output values.

Description

Delete the output values of targets in _targets/objects/ (or the cloud if applicable) but keep the
records in the metadata.

Usage

tar_delete(
names,
cloud = TRUE,
batch_size = 1000L,
verbose = TRUE,
store = targets::tar_config_get("store")

)

Arguments

names Optional, names of the targets to delete. If supplied, the names argument re-
stricts the targets which are deleted. The value is a tidyselect expression like
any_of() or starts_with() from tidyselect itself, or tar_described_as()
to select target names based on their descriptions.

cloud Logical of length 1, whether to delete objects from the cloud if applicable (e.g.
AWS, GCP). If FALSE, files are not deleted from the cloud.

batch_size Positive integer between 1 and 1000, number of target objects to delete from the
cloud with each HTTP API request. Currently only supported for AWS. Cannot
be more than 1000.

verbose Logical of length 1, whether to print console messages to show progress when
deleting each batch of targets from each cloud bucket. Batched deletion with
verbosity is currently only supported for AWS.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

If you have a small number of data-heavy targets you need to discard to conserve storage, this
function can help. Local external files files (i.e. format = "file" and repository = "local") are
not deleted. For targets with repository not equal "local", tar_delete() attempts to delete the
file and errors out if the deletion is unsuccessful. If deletion fails, either log into the cloud platform
and manually delete the file (e.g. the AWS web console in the case of repository = "aws") or call
tar_invalidate() on that target so that targets does not try to delete the object. For patterns

tar_delete 35

recorded in the metadata, all the branches will be deleted. For patterns no longer in the metadata,
branches are left alone.

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

Cloud target data versioning

Some buckets in Amazon S3 or Google Cloud Storage are "versioned", which means they track
historical versions of each data object. If you use targets with cloud storage (https://books.
ropensci.org/targets/cloud-storage.html) and versioning is turned on, then targets will
record each version of each target in its metadata.

Functions like tar_read() and tar_load() load the version recorded in the local metadata, which
may not be the same as the "current" version of the object in the bucket. Likewise, functions
tar_delete() and tar_destroy() only remove the version ID of each target as recorded in the
local metadata.

If you want to interact with the latest version of an object instead of the version ID recorded in the
local metadata, then you will need to delete the object from the metadata.

1. Make sure your local copy of the metadata is current and up to date. You may need to run
tar_meta_download() or tar_meta_sync() first.

2. Run tar_unversion() to remove the recorded version IDs of your targets in the local meta-
data.

3. With the version IDs gone from the local metadata, functions like tar_read() and tar_destroy()
will use the latest version of each target data object.

4. Optional: to back up the local metadata file with the version IDs deleted, use tar_meta_upload().

See Also

Other clean: tar_destroy(), tar_invalidate(), tar_prune(), tar_prune_list(), tar_unversion()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)

https://books.ropensci.org/targets/cloud-storage.html
https://books.ropensci.org/targets/cloud-storage.html

36 tar_deps

}, ask = FALSE)
tar_make()
tar_delete(starts_with("y")) # Only deletes y1 and y2.
tar_make() # y1 and y2 rerun but return the same values, so z is up to date.
})
}

tar_deps Code dependencies

Description

List the dependencies of a function or expression. tar_deps() expects the expr argument to be
an unevaluated expression, whereas tar_deps_raw() expects expr to be an evaluated expression
object. Functions can be passed normally in either case.

Usage

tar_deps(expr)

tar_deps_raw(expr)

Arguments

expr An R expression or function. tar_deps() expects the expr argument to be
an unevaluated expression, whereas tar_deps_raw() expects expr to be an
evaluated expression object. Functions can be passed normally in either case.

Details

targets detects the dependencies of commands using static code analysis. Use tar_deps() to run
the code analysis and see the dependencies for yourself.

Value

Character vector of the dependencies of a function or expression.

See Also

tar_branches(), tar_network()

Other inspect: tar_manifest(), tar_network(), tar_outdated(), tar_sitrep(), tar_validate()

tar_described_as 37

Examples

tar_deps(x <- y + z)
tar_deps(quote(x <- y + z))
tar_deps({

x <- 1
x + a

})
tar_deps(function(a = b) map_dfr(data, ~do_row(.x)))
tar_deps_raw(function(a = b) map_dfr(data, ~do_row(.x)))

tar_described_as Select targets using their descriptions.

Description

Select a subset of targets in the _targets.R file based on their custom descriptions.

Usage

tar_described_as(
described_as = NULL,
tidyselect = TRUE,
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script")

)

Arguments

described_as A tidyselect expression to select targets based on their descriptions. For ex-
ample, described_as = starts_with("survival model") matches all targets
in the pipeline whose description arguments of tar_target() start with the
text string "survival model".

tidyselect If TRUE, return a call to tidyselect::all_of() identifying the selected targets,
which can then be supplied to any tidyselect-compatible namesargument of downstream functions like [tar_make()] and [tar_manifest()]. IfFALSE‘,
return a simple character vector of target names.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

38 tar_described_as

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

Details

Targets with empty descriptions are ignored.

Value

If tidyselect is TRUE, then tar_described_as() returns a call to tidyselect::all_of() which
can be supplied to the names argument of functions like tar_manifest() and tar_make(). This
allows functions like tar_manifest() and tar_make() to focus on only the targets with the match-
ing descriptions. If tidyselect is FALSE, then tar_described_as() returns a simple character
vector of the names of all the targets in the pipeline with matching descriptions.

See Also

Other utilities: tar_active(), tar_backoff(), tar_call(), tar_cancel(), tar_definition(),
tar_envir(), tar_format_get(), tar_group(), tar_name(), tar_path(), tar_path_script(),
tar_path_script_support(), tar_path_store(), tar_path_target(), tar_source(), tar_store(),
tar_unblock_process()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(

tar_target(b2, TRUE, description = "blue two"),
tar_target(b3, TRUE, description = "blue three"),
tar_target(g2, TRUE, description = "green two"),
tar_target(g3, TRUE, description = "green three"),
tar_target(g4, TRUE, description = "green three")

)

tar_destroy 39

}, ask = FALSE)
tar_described_as(starts_with("green"), tidyselect = FALSE)
tar_make(names = tar_described_as(starts_with("green")))
tar_progress() # Only `g2`, `g3`, and `g4` ran.
})
}

tar_destroy Destroy the data store.

Description

Destroy the data store written by the pipeline.

Usage

tar_destroy(
destroy = c("all", "cloud", "local", "meta", "process", "progress", "objects",

"scratch", "workspaces", "user"),
batch_size = 1000L,
verbose = TRUE,
ask = NULL,
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

destroy Character of length 1, what to destroy. Choices:

• "all": entire data store (default: _targets/) including cloud data, as well
as download/upload scratch files.

• "cloud": cloud data, including metadata as well as target object data from
targets with tar_target(..., repository = "aws"). Also deletes tem-
porary staging files in file.path(tempdir(), "targets") that may have
been accidentally left over from incomplete uploads or downloads.

• "local": all the local files in the data store but nothing on the cloud.
• "meta": metadata file at meta/meta in the data store, which invalidates all

the targets but keeps the data.
• "process": progress data file at meta/process in the data store, which

resets the metadata of the main process.
• "progress": progress data file at meta/progress in the data store, which

resets the progress tracking info.
• "objects": all the target return values in objects/ in the data store but

keep progress and metadata. Dynamic files are not deleted this way.
• "scratch": temporary files in saved during tar_make() that should auto-

matically get deleted except if R crashed.

40 tar_destroy

• "workspaces": compressed lightweight files in workspaces/ in the data
store with the saved workspaces of targets. See tar_workspace() for de-
tails.

• "user": custom user-supplied files in the user/ folder in the data store.

batch_size Positive integer between 1 and 1000, number of target objects to delete from the
cloud with each HTTP API request. Currently only supported for AWS. Cannot
be more than 1000.

verbose Logical of length 1, whether to print console messages to show progress when
deleting each batch of targets from each cloud bucket. Batched deletion with
verbosity is currently only supported for AWS.

ask Logical of length 1, whether to pause with a menu prompt before deleting
files. To disable this menu, set the TAR_ASK environment variable to "false".
usethis::edit_r_environ() can help set environment variables.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. If the script does not exist, then cloud
metadata will not be deleted.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

The data store is a folder created by tar_make() (or tar_make_future() or tar_make_clustermq()).
The details of the data store are explained at https://books.ropensci.org/targets/data.
html#local-data-store. The data store folder contains the output data and metadata of the tar-
gets in the pipeline. Usually, the data store is a folder called _targets/ (see tar_config_set()
to customize), and it may link to data on the cloud if you used AWS or GCP buckets. By de-
fault, tar_destroy() deletes the entire _targets/ folder (or wherever the data store is located),
including custom user-supplied files in _targets/user/, as well as any cloud data that the pipeline
uploaded. See the destroy argument to customize this behavior and only delete part of the data
store, and see functions like tar_invalidate(), tar_delete(), and tar_prune() to remove in-
formation pertaining to some but not all targets in the pipeline. After calling tar_destroy() with
default arguments, the entire data store is gone, which means all the output data from previous
runs of the pipeline is gone (except for input/output files tracked with tar_target(..., format =
"file")). The next run of the pipeline will start from scratch, and it will not skip any targets.

Value

NULL (invisibly).

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets

https://books.ropensci.org/targets/data.html#local-data-store
https://books.ropensci.org/targets/data.html#local-data-store

tar_destroy 41

can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

Cloud target data versioning

Some buckets in Amazon S3 or Google Cloud Storage are "versioned", which means they track
historical versions of each data object. If you use targets with cloud storage (https://books.
ropensci.org/targets/cloud-storage.html) and versioning is turned on, then targets will
record each version of each target in its metadata.

Functions like tar_read() and tar_load() load the version recorded in the local metadata, which
may not be the same as the "current" version of the object in the bucket. Likewise, functions
tar_delete() and tar_destroy() only remove the version ID of each target as recorded in the
local metadata.

If you want to interact with the latest version of an object instead of the version ID recorded in the
local metadata, then you will need to delete the object from the metadata.

1. Make sure your local copy of the metadata is current and up to date. You may need to run
tar_meta_download() or tar_meta_sync() first.

2. Run tar_unversion() to remove the recorded version IDs of your targets in the local meta-
data.

3. With the version IDs gone from the local metadata, functions like tar_read() and tar_destroy()
will use the latest version of each target data object.

4. Optional: to back up the local metadata file with the version IDs deleted, use tar_meta_upload().

See Also

Other clean: tar_delete(), tar_invalidate(), tar_prune(), tar_prune_list(), tar_unversion()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(tar_target(x, 1 + 1))

})
tar_make() # Creates the _targets/ data store.
tar_destroy()
print(file.exists("_targets")) # Should be FALSE.
})
}

https://books.ropensci.org/targets/cloud-storage.html
https://books.ropensci.org/targets/cloud-storage.html

42 tar_dispatched

tar_dispatched List dispatched targets.

Description

List the targets with progress status "dispatched".

Usage

tar_dispatched(names = NULL, store = targets::tar_config_get("store"))

Arguments

names Optional, names of the targets. If supplied, the function restricts its output to
these targets. You can supply symbols or tidyselect helpers like any_of()
and starts_with().

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

A target is "dispatched" if it is sent off to be run. Depending on your high-performance computing
configuration via the crew package, the may not actually start right away. This may happen if the
target is ready to start but all available parallel workers are busy.

Value

A character vector of dispatched targets.

See Also

Other progress: tar_canceled(), tar_completed(), tar_errored(), tar_poll(), tar_progress(),
tar_progress_branches(), tar_progress_summary(), tar_skipped(), tar_watch(), tar_watch_server(),
tar_watch_ui()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

tar_edit 43

)
}, ask = FALSE)
tar_make()
tar_dispatched()
tar_dispatched(starts_with("y_")) # see also any_of()
})
}

tar_edit Open the target script file for editing.

Description

Open the target script file for editing. Requires the usethis package.

Usage

tar_edit(script = targets::tar_config_get("script"))

Arguments

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

Details

The target script file is an R code file that defines the pipeline. The default path is _targets.R, but
the default for the current project can be configured with tar_config_set()

See Also

Other scripts: tar_github_actions(), tar_helper(), tar_renv(), tar_script()

tar_engine_knitr Target Markdown knitr engine

Description

knitr language engine that runs targets code chunks in Target Markdown.

Usage

tar_engine_knitr(options)

44 tar_engine_knitr

Arguments

options A named list of knitr chunk options.

Value

Character, output generated from knitr::engine_output().

Target Markdown interactive mode

Target Markdown has two modes:

1. Non-interactive mode. This is the default when you run knitr::knit() or rmarkdown::render().
Here, the code in targets code chunks gets written to special script files in order to set up a
targets pipeline to run later.

2. Interactive mode: here, no scripts are written to set up a pipeline. Rather, the globals or targets
in question are run in the current environment and the values are assigned to that environment.

The mode is interactive if !isTRUE(getOption("knitr.in.progress")), is TRUE. The knitr.in.progress
option is TRUE when you run knitr::knit() or rmarkdown::render() and NULL if you are run-
ning one chunk at a time interactively in an integrated development environment, e.g. the note-
book interface in RStudio: https://bookdown.org/yihui/rmarkdown/notebook.html. You can
choose the mode with the tar_interactive chunk option. (In targets 0.6.0, tar_interactive
defaults to interactive() instead of !isTRUE(getOption("knitr.in.progress")).)

Target Markdown chunk options

Target Markdown introduces the following knitr code chunk options. Most other standard knitr
code chunk options should just work in non-interactive mode. In interactive mode, not all

• tar_globals: Logical of length 1, whether to define globals or targets. If TRUE, the chunk
code defines functions, objects, and options common to all the targets. If FALSE or NULL
(default), then the chunk returns formal targets for the pipeline.

• tar_interactive: Logical of length 1, whether to run in interactive mode or non-interactive
mode. See the "Target Markdown interactive mode" section of this help file for details.

• tar_name: name to use for writing helper script files (e.g. _targets_r/targets/target_script.R)
and specifying target names if the tar_simple chunk option is TRUE. All helper scripts and tar-
get names must have unique names, so please do not set this option globally with knitr::opts_chunk$set().

• tar_script: Character of length 1, where to write the target script file in non-interactive
mode. Most users can skip this option and stick with the default _targets.R script path.
Helper script files are always written next to the target script in a folder with an "_r" suffix.
The tar_script path must either be absolute or be relative to the project root (where you call
tar_make() or similar). If not specified, the target script path defaults to tar_config_get("script")
(default: _targets.R; helpers default: _targets_r/). When you run tar_make() etc. with
a non-default target script, you must select the correct target script file either with the script
argument or with tar_config_set(script = ...). The function will source() the script
file from the current working directory (i.e. with chdir = FALSE in source()).

https://bookdown.org/yihui/rmarkdown/notebook.html

tar_envir 45

• tar_simple: Logical of length 1. Set to TRUE to define a single target with a simplified inter-
face. In code chunks with tar_simple equal to TRUE, the chunk label (or the tar_name chunk
option if you set it) becomes the name, and the chunk code becomes the command. In other
words, a code chunk with label targetname and command mycommand() automatically gets
converted to tar_target(name = targetname, command = mycommand()). All other argu-
ments of tar_target() remain at their default values (configurable with tar_option_set()
in a tar_globals = TRUE chunk).

See Also

https://books.ropensci.org/targets/literate-programming.html

Other Target Markdown: tar_interactive(), tar_noninteractive(), tar_toggle()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
Register the engine.
if (requireNamespace("knitr", quietly = TRUE)) {

knitr::knit_engines$set(targets = targets::tar_engine_knitr)
}
Then, `targets` code chunks in a knitr report will run
as described at
<https://books.ropensci.org/targets/literate-programming.html>.
}

tar_envir For developers only: get the environment of the current target.

Description

For developers only: get the environment where a target runs its command. Designed to be called
while the target is running. The environment inherits from tar_option_get("envir").

Usage

tar_envir(default = parent.frame())

Arguments

default Environment, value to return if tar_envir() is called on its own outside a
targets pipeline. Having a default lets users run things without tar_make(),
which helps peel back layers of code and troubleshoot bugs.

Details

Most users should not use tar_envir() because accidental modifications to parent.env(tar_envir())
could break the pipeline. tar_envir() only exists in order to support third-party interface pack-
ages, and even then the returned environment is not modified.

https://books.ropensci.org/targets/literate-programming.html

46 tar_envvars

Value

If called from a running target, tar_envir() returns the environment where the target runs its
command. If called outside a pipeline, the return value is whatever the user supplies to default
(which defaults to parent.frame()).

See Also

Other utilities: tar_active(), tar_backoff(), tar_call(), tar_cancel(), tar_definition(),
tar_described_as(), tar_format_get(), tar_group(), tar_name(), tar_path(), tar_path_script(),
tar_path_script_support(), tar_path_store(), tar_path_target(), tar_source(), tar_store(),
tar_unblock_process()

Examples

tar_envir()
tar_envir(default = new.env(parent = emptyenv()))
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script(tar_target(x, tar_envir(default = parent.frame())))
tar_make(x)
tar_read(x)
})
}

tar_envvars Show targets environment variables.

Description

Show all the special environment variables available for customizing targets.

Usage

tar_envvars(unset = "")

Arguments

unset Character of length 1, value to return for any environment variable that is not
set.

Details

You can customize the behavior of targets with special environment variables. The sections in this
help file describe each environment variable, and the tar_envvars() function lists their current
values.

If you modify environment variables, please set them in project-level .Renviron file so you do not
lose your configuration when you restart your R session. Modify the project-level .Renviron file

tar_envvars 47

with usethis::edit_r_environ(scope = "project"). Restart your R session after you are done
editing.

For targets that run on parallel workers created by tar_make_clustermq() or tar_make_future(),
only the environment variables listed by tar_envvars() are specifically exported to the targets.
For all other environment variables, you will have to set the values manually, e.g. a project-level
.Renviron file (for workers that have access to the local file system).

Value

A data frame with one row per environment variable and columns with the name and current value
of each. An unset environment variable will have a value of "" by default. (Customize with the
unset argument).

TAR_ASK

The TAR_ASK environment variable accepts values "true" and "false". If TAR_ASK is not set, or
if it is set to "true", then targets asks permission in a menu before overwriting certain files,
such as the target script file (default: _targets.R) in tar_script(). If TAR_ASK is "false", then
targets overwrites the old files with the new ones without asking. Once you are comfortable
with tar_script(), tar_github_actions(), and similar functions, you can safely set TAR_ASK
to "false" in either a project-level or user-level .Renviron file.

TAR_CONFIG

The TAR_CONFIG environment variable controls the file path to the optional YAML configuration
file with project settings. See the help file of tar_config_set() for details.

TAR_PROJECT

The TAR_PROJECT environment variable sets the name of project to set and get settings when work-
ing with the YAML configuration file. See the help file of tar_config_set() for details.

TAR_WARN

The TAR_WARN environment variable accepts values "true" and "false". If TAR_WARN is not set, or
if it is set to "true", then targets throws warnings in certain edge cases, such as target/global name
conflicts and dangerous use of devtools::load_all(). If TAR_WARN is "false", then targets
does not throw warnings in these cases. These warnings can detect potentially serious issues with
your pipeline, so please do not set TAR_WARN unless your use case absolutely requires it.

See Also

Other configuration: tar_config_get(), tar_config_projects(), tar_config_set(), tar_config_unset(),
tar_config_yaml(), tar_option_get(), tar_option_reset(), tar_option_set()

Examples

tar_envvars()

48 tar_errored

tar_errored List errored targets.

Description

List targets whose progress is "errored".

Usage

tar_errored(names = NULL, store = targets::tar_config_get("store"))

Arguments

names Optional, names of the targets. If supplied, the output is restricted to the selected
targets. The object supplied to names should be NULL or a tidyselect expres-
sion like any_of() or starts_with() from tidyselect itself, or tar_described_as()
to select target names based on their descriptions.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A character vector of errored targets.

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other progress: tar_canceled(), tar_completed(), tar_dispatched(), tar_poll(), tar_progress(),
tar_progress_branches(), tar_progress_summary(), tar_skipped(), tar_watch(), tar_watch_server(),
tar_watch_ui()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)

tar_exist_meta 49

library(tarchetypes)
list(

tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_errored()
tar_errored(starts_with("y_")) # see also any_of()
})
}

tar_exist_meta Check if target metadata exists.

Description

Check if the target metadata file _targets/meta/meta exists for the current project.

Usage

tar_exist_meta(store = targets::tar_config_get("store"))

Arguments

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

To learn more about data storage in targets, visit https://books.ropensci.org/targets/
data.html.

Value

Logical of length 1, whether the current project’s metadata exists.

See Also

Other existence: tar_exist_objects(), tar_exist_process(), tar_exist_progress(), tar_exist_script()

Examples

tar_exist_meta()

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

50 tar_exist_objects

tar_exist_objects Check if local output data exists for one or more targets.

Description

Check if output target data exists in either _targets/objects/ or the cloud for one or more targets.

Usage

tar_exist_objects(
names,
cloud = TRUE,
store = targets::tar_config_get("store")

)

Arguments

names Character vector of target names. Not tidyselect-compatible.

cloud Logical of length 1, whether to include cloud targets in the output (e.g. tar_target(...,
repository = "aws")).

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

If a target has no metadata or if the repository argument of tar_target() was set to "local",
then the _targets/objects/ folder is checked. Otherwise, if there is metadata and repsitory is
not "local", then tar_exist_objects() checks the cloud repository selected.

Value

Logical of length length(names), whether each given target has an existing file in either _targets/objects/
or the cloud.

See Also

Other existence: tar_exist_meta(), tar_exist_process(), tar_exist_progress(), tar_exist_script()

Examples

tar_exist_objects(c("target1", "target2"))

tar_exist_process 51

tar_exist_process Check if process metadata exists.

Description

Check if the process metadata file _targets/meta/process exists for the current project.

Usage

tar_exist_process(store = targets::tar_config_get("store"))

Arguments

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

To learn more about data storage in targets, visit https://books.ropensci.org/targets/
data.html.

Value

Logical of length 1, whether the current project’s metadata exists.

See Also

Other existence: tar_exist_meta(), tar_exist_objects(), tar_exist_progress(), tar_exist_script()

Examples

tar_exist_process()

tar_exist_progress Check if progress metadata exists.

Description

Check if the progress metadata file _targets/meta/progress exists for the current project.

Usage

tar_exist_progress(store = targets::tar_config_get("store"))

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

52 tar_exist_script

Arguments

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

To learn more about data storage in targets, visit https://books.ropensci.org/targets/
data.html.

Value

Logical of length 1, whether the current project’s metadata exists.

See Also

Other existence: tar_exist_meta(), tar_exist_objects(), tar_exist_process(), tar_exist_script()

Examples

tar_exist_progress()

tar_exist_script Check if the target script file exists.

Description

Check if the target script file exists for the current project. The target script is _targets.R by
default, but the path can be configured for the current project using tar_config_set().

Usage

tar_exist_script(script = targets::tar_config_get("script"))

Arguments

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

Value

Logical of length 1, whether the current project’s metadata exists.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_format 53

See Also

Other existence: tar_exist_meta(), tar_exist_objects(), tar_exist_process(), tar_exist_progress()

Examples

tar_exist_script()

tar_format Define a custom target storage format.

Description

Define a custom target storage format for the format argument of tar_target() or tar_option_set().

Usage

tar_format(
read = NULL,
write = NULL,
marshal = NULL,
unmarshal = NULL,
convert = NULL,
copy = NULL,
substitute = list(),
repository = NULL

)

Arguments

read A function with a single argument named path. This function should read and
return the target stored at the file in the argument. It should have no side effects.
See the "Format functions" section for specific requirements. If NULL, the read
argument defaults to readRDS().

write A function with two arguments: object and path, in that order. This function
should save the R object object to the file path at path and have no other side
effects. The function need not return a value, but the file written to path must
be a single file, and it cannot be a directory. See the "Format functions" section
for specific requirements. If NULL, the write argument defaults to saveRDS()
with version = 3.

marshal A function with a single argument named object. This function should marshal
the R object and return an in-memory object that can be exported to remote par-
allel workers. It should not read or write any persistent files. See the Marshalling
section for details. See the "Format functions" section for specific requirements.
If NULL, the marshal argument defaults to just returning the original object with-
out any modifications.

54 tar_format

unmarshal A function with a single argument named object. This function should unmar-
shal the (marshalled) R object and return an in-memory object that is appropriate
and valid for use on a parallel worker. It should not read or write any persistent
files. See the Marshalling section for details. See the "Format functions" sec-
tion for specific requirements. If NULL, the unmarshal argument defaults to just
returning the original object without any modifications.

convert The convert argument is a function that accepts the object returned by the com-
mand of the target and changes it into an acceptable format (e.g. can be saved
with the read function). The convert ensures the in-memory copy of an ob-
ject during the running pipeline session is the same as the copy of the object
that is saved to disk. The function should be idempotent, and it should handle
edge cases like NULL values (especially for error = "null" in tar_target() or
tar_option_set()). If NULL, the convert argument defaults to just returning
the original object without any modifications.

copy The copy argument is a function that accepts the object returned by the com-
mand of the target and makes a deep copy in memory. This method does is
relevant to objects like data.tables that support in-place modification which
could cause unpredictable side effects from target to target. In cases like these,
the target should be deep-copied before a downstream target attempts to use it
(in the case of data.table objects, using data.table::copy()). If NULL, the
copy argument defaults to just returning the original object without any modifi-
cations.

substitute Named list of values to be inserted into the body of each custom function in place
of symbols in the body. For example, if write = function(object, path)
saveRDS(object, path, version = VERSION) and substitute = list(VERSION
= 3), then the write function will actually end up being function(object,
path) saveRDS(object, path, version = 3).
Please do not include temporary or sensitive information such as authentication
credentials. If you do, then targets will write them to metadata on disk, and a
malicious actor could steal and misuse them. Instead, pass sensitive information
as environment variables using tar_resources_custom_format(). These en-
vironment variables only exist in the transient memory spaces of the R sessions
of the local and worker processes.

repository Deprecated. Use the repository argument of tar_target() or tar_option_set()
instead.

Value

A character string of length 1 encoding the custom format. You can supply this string directly to
the format argument of tar_target() or tar_option_set().

Marshalling

If an object can only be used in the R session where it was created, it is called "non-exportable".
Examples of non-exportable R objects are Keras models, Torch objects, xgboost matrices, xml2
documents, rstan model objects, sparklyr data objects, and database connection objects. These

tar_format 55

objects cannot be exported to parallel workers (e.g. for tar_make_future()) without special treat-
ment. To send an non-exportable object to a parallel worker, the object must be marshalled: con-
verted into a form that can be exported safely (similar to serialization but not always the same).
Then, the worker must unmarshal the object: convert it into a form that is usable and valid in
the current R session. Arguments marshal and unmarshal of tar_format() let you control how
marshalling and unmarshalling happens.

Format functions

In tar_format(), functions like read, write, marshal, and unmarshal must be perfectly pure and
perfectly self-sufficient. They must load or namespace all their own packages, and they must not
depend on any custom user-defined functions or objects in the global environment of your pipeline.
targets converts each function to and from text, so it must not rely on any data in the closure. This
disqualifies functions produced by Vectorize(), for example.

The write function must write only a single file, and the file it writes must not be a directory.

The functions to read and write the object should not do any conversions on the object. That is the
job of the convert argument. The convert argument is a function that accepts the object returned
by the command of the target and changes it into an acceptable format (e.g. can be saved with the
read function). Working with the convert function is best because it ensures the in-memory copy
of an object during the running pipeline session is the same as the copy of the object that is saved
to disk.

See Also

Other storage: tar_load(), tar_load_everything(), tar_objects(), tar_read()

Examples

The following target is equivalent to the current superseded
tar_target(name, command(), format = "keras").
An improved version of this would supply a `convert` argument
to handle NULL objects, which are returned by the target if it
errors and the error argument of tar_target() is "null".
tar_target(

name = keras_target,
command = your_function(),
format = tar_format(
read = function(path) {

keras::load_model_hdf5(path)
},
write = function(object, path) {

keras::save_model_hdf5(object = object, filepath = path)
},
marshal = function(object) {

keras::serialize_model(object)
},
unmarshal = function(object) {

keras::unserialize_model(object)
}

)

56 tar_format_get

)
And the following is equivalent to the current superseded
tar_target(name, torch::torch_tensor(seq_len(4)), format = "torch"),
except this version has a `convert` argument to handle
cases when `NULL` is returned (e.g. if the target errors out
and the `error` argument is "null" in tar_target()
or tar_option_set())
tar_target(

name = torch_target,
command = torch::torch_tensor(),
format = tar_format(
read = function(path) {

torch::torch_load(path)
},
write = function(object, path) {

torch::torch_save(obj = object, path = path)
},
marshal = function(object) {

con <- rawConnection(raw(), open = "wr")
on.exit(close(con))
torch::torch_save(object, con)
rawConnectionValue(con)

},
unmarshal = function(object) {

con <- rawConnection(object, open = "r")
on.exit(close(con))
torch::torch_load(con)

}
)

)

tar_format_get Current storage format.

Description

Get the storage format of the target currently running.

Usage

tar_format_get()

Details

This function is meant to be called inside a target in a running pipeline. If it is called outside a target
in the running pipeline, it will return the default format given by tar_option_get("format").

tar_github_actions 57

Value

A character string, storage format of the target currently running in the pipeline. If called out-
side a target in the running pipeline, tar_format_get() will return the default format given by
tar_option_get("format").

See Also

Other utilities: tar_active(), tar_backoff(), tar_call(), tar_cancel(), tar_definition(),
tar_described_as(), tar_envir(), tar_group(), tar_name(), tar_path(), tar_path_script(),
tar_path_script_support(), tar_path_store(), tar_path_target(), tar_source(), tar_store(),
tar_unblock_process()

Examples

tar_target(x, tar_format_get(), format = "qs")

tar_github_actions Set up GitHub Actions to run a targets pipeline

Description

Writes a GitHub Actions workflow file so the pipeline runs on every push to GitHub. Historical
runs accumulate in the targets-runs branch, and the latest output is restored before tar_make()
so up-to-date targets do not rerun.

Usage

tar_github_actions(
path = file.path(".github", "workflows", "targets.yaml"),
ask = NULL

)

Arguments

path Character of length 1, file path to write the GitHub Actions workflow file.

ask Logical, whether to ask before writing if the workflow file already exists. If
NULL, defaults to Sys.getenv("TAR_ASK"). (Set to "true" or "false" with
Sys.setenv()). If ask and the TAR_ASK environment variable are both indeter-
minate, defaults to interactive().

Details

Steps to set up continuous deployment:

1. Ensure your pipeline stays within the resource limitations of GitHub Actions and reposito-
ries, both for storage and compute. For storage, you may wish to reduce the burden with an
alternative repository (e.g. tar_target(..., repository = "aws")).

58 tar_glimpse

2. Ensure Actions are enabled in your GitHub repository. You may have to visit the Settings tab.

3. Call targets::tar_renv(extras = character(0)) to expose hidden package dependen-
cies.

4. Set up renv for your project (with renv::init() or renv::snapshot()). Details at https:
//rstudio.github.io/renv/articles/ci.html.

5. Commit the renv.lock file to the main (recommended) or master Git branch.

6. Run tar_github_actions() to create the workflow file. Commit this file to main (recom-
mended) or master in Git.

7. Push your project to GitHub. Verify that a GitHub Actions workflow runs and pushes results
to targets-runs. Subsequent runs will only recompute the outdated targets.

Value

Nothing (invisibly). This function writes a GitHub Actions workflow file as a side effect.

See Also

Other scripts: tar_edit(), tar_helper(), tar_renv(), tar_script()

Examples

tar_github_actions(tempfile())

tar_glimpse Visualize an abridged fast dependency graph.

Description

Analyze the pipeline defined in the target script file (default: _targets.R) and visualize the di-
rected acyclic graph of targets. Unlike tar_visnetwork(), tar_glimpse() does not account for
metadata or progress information, which means the graph renders faster. Also, tar_glimpse()
omits functions and other global objects by default (but you can include them with targets_only
= FALSE).

Usage

tar_glimpse(
targets_only = TRUE,
names = NULL,
shortcut = FALSE,
allow = NULL,
exclude = ".Random.seed",
label = targets::tar_config_get("label"),
label_width = targets::tar_config_get("label_width"),
level_separation = targets::tar_config_get("level_separation"),
degree_from = 1L,

https://rstudio.github.io/renv/articles/ci.html
https://rstudio.github.io/renv/articles/ci.html

tar_glimpse 59

degree_to = 1L,
zoom_speed = 1,
physics = FALSE,
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

targets_only Logical, whether to restrict the output to just targets (FALSE) or to also include
global functions and objects.

names Names of targets. The graph visualization will operate only on these targets
(and unless shortcut is TRUE, all the targets upstream as well). Selecting a
small subgraph using names could speed up the load time of the visualization.
Unlike allow, names is invoked before the graph is generated. Set to NULL
to check/run all the targets (default). Otherwise, the object supplied to names
should be a tidyselect expression like any_of() or starts_with() from
tidyselect itself, or tar_described_as() to select target names based on
their descriptions.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as
the dependency graph goes. If TRUE, then the function only checks the targets in
names and uses stored metadata for information about upstream dependencies as
needed. shortcut = TRUE increases speed if there are a lot of up-to-date targets,
but it assumes all the dependencies are up to date, so please use with caution.
Also, shortcut = TRUE only works if you set names.

allow Optional, define the set of allowable vertices in the graph. Unlike names, allow
is invoked only after the graph is mostly resolved, so it will not speed up execu-
tion. Set to NULL to allow all vertices in the pipeline and environment (default).
Otherwise, you can supply symbols or tidyselect helpers like starts_with().

exclude Optional, define the set of exclude vertices from the graph. Unlike names,
exclude is invoked only after the graph is mostly resolved, so it will not speed
up execution. Set to NULL to exclude no vertices. Otherwise, you can supply
symbols or tidyselect helpers like any_of() and starts_with().

label Character vector of one or more aesthetics to add to the vertex labels. Currently,
the only option is "description" to show each target’s custom description, or
character(0) to suppress it.

label_width Positive numeric of length 1, maximum width (in number of characters) of the
node labels.

level_separation

Numeric of length 1, levelSeparation argument of visNetwork::visHierarchicalLayout().
Controls the distance between hierarchical levels. Consider changing the value
if the aspect ratio of the graph is far from 1. If level_separation is NULL, the
levelSeparation argument of visHierarchicalLayout() defaults to 150.

60 tar_glimpse

degree_from Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_from controls the number of edges the neighborhood
extends upstream.

degree_to Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_to controls the number of edges the neighborhood
extends downstream.

zoom_speed Positive numeric of length 1, scaling factor on the zoom speed. Above 1 zooms
faster than default, below 1 zooms lower than default.

physics Logical of length 1, whether to implement interactive physics in the graph, e.g.
edge elasticity.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.
envir An environment, where to run the target R script (default: _targets.R) if

callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A visNetwork HTML widget object.

Dependency graph

The dependency graph of a pipeline is a directed acyclic graph (DAG) where each node indicates
a target or global object and each directed edge indicates where a downstream node depends on

tar_group 61

an upstream node. The DAG is not always a tree, but it never contains a cycle because no target
is allowed to directly or indirectly depend on itself. The dependency graph should show a natural
progression of work from left to right. targets uses static code analysis to create the graph, so
the order of tar_target() calls in the _targets.R file does not matter. However, targets does
not support self-referential loops or other cycles. For more information on the dependency graph,
please read https://books.ropensci.org/targets/targets.html#dependencies.

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other visualize: tar_mermaid(), tar_visnetwork()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set()
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_glimpse()
tar_glimpse(allow = starts_with("y")) # see also any_of()
})
}

tar_group Group a data frame to iterate over subsets of rows.

Description

Like dplyr::group_by(), but for patterns. tar_group() allows you to map or cross over subsets
of data frames. Requires iteration = "group" on the target. See the example.

Usage

tar_group(x)

https://books.ropensci.org/targets/targets.html#dependencies

62 tar_group

Arguments

x Grouped data frame from dplyr::group_by()

Details

The goal of tar_group() is to post-process the return value of a data frame target to allow down-
stream targets to branch over subsets of rows. It takes the groups defined by dplyr::group_by()
and translates that information into a special tar_group is a column. tar_group is a vector of
positive integers from 1 to the number of groups. Rows with the same integer in tar_group belong
to the same group, and branches are arranged in increasing order with respect to the integers in
tar_group. The assignment of tar_group integers to group levels depends on the orderings in-
side the grouping variables and not the order of rows in the dataset. dplyr::group_keys() on the
grouped data frame shows how the grouping variables correspond to the integers in the tar_group
column.

Value

A data frame with a special tar_group column that targets will use to find subsets of your data
frame.

See Also

Other utilities: tar_active(), tar_backoff(), tar_call(), tar_cancel(), tar_definition(),
tar_described_as(), tar_envir(), tar_format_get(), tar_name(), tar_path(), tar_path_script(),
tar_path_script_support(), tar_path_store(), tar_path_target(), tar_source(), tar_store(),
tar_unblock_process()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
The tar_group() function simply creates
a tar_group column to partition the rows
of a data frame.
data.frame(

x = seq_len(6),
id = rep(letters[seq_len(3)], each = 2)

) %>%
dplyr::group_by(id) %>%
tar_group()

We use tar_group() below to branch over
subsets of a data frame defined with dplyr::group_by().
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({
library(dplyr)
library(targets)
library(tarchetypes)
list(

tar_target(
data,
data.frame(

x = seq_len(6),

tar_helper 63

id = rep(letters[seq_len(3)], each = 2)
) %>%

group_by(id) %>%
tar_group(),

iteration = "group"
),
tar_target(

sums,
sum(data$x),
pattern = map(data),
iteration = "vector"

)
)
})
tar_make()
tar_read(sums) # Should be c(3, 7, 11).
})
}

tar_helper Write a helper R script.

Description

Write a helper R script for a targets pipeline. Could be supporting functions or the target script
file (default: _targets.R) itself.

tar_helper() expects an unevaluated expression for the code argument, whereas tar_helper_raw()
expects an evaluated expression object.

Usage

tar_helper(path = NULL, code = NULL, tidy_eval = TRUE, envir = parent.frame())

tar_helper_raw(path = NULL, code = NULL)

Arguments

path Character of length 1, path to write (or overwrite) code. If the parent directory
does not exist, tar_helper_raw() creates it. tar_helper() overwrites the file
if it already exists.

code Code to write to path. tar_helper() expects an unevaluated expression for the
code argument, whereas tar_helper_raw() expects an evaluated expression
object.

tidy_eval Logical, whether to use tidy evaluation on code. If turned on, you can substitute
expressions and symbols using !! and !!!. See examples below.

envir Environment for tidy evaluation.

64 tar_interactive

Details

tar_helper() is a specialized version of tar_script() with flexible paths and tidy evaluation.

Value

NULL (invisibly)

See Also

Other scripts: tar_edit(), tar_github_actions(), tar_renv(), tar_script()

Examples

Without tidy evaluation:
path <- tempfile()
tar_helper(path, code = x <- 1)
tar_helper_raw(path, code = quote(x <- 1)) # equivalent
writeLines(readLines(path))
With tidy evaluation:
y <- 123
tar_helper(path, x <- !!y)
writeLines(readLines(path))

tar_interactive Run if Target Markdown interactive mode is on.

Description

In Target Markdown, run the enclosed code only if interactive mode is activated. Otherwise, do not
run the code.

Usage

tar_interactive(code)

Arguments

code R code to run if Target Markdown interactive mode is turned on.

Details

Visit <books.ropensci.org/targets/literate-programming.html> to learn about Target Markdown and
interactive mode.

Value

If Target Markdown interactive mode is turned on, the function returns the result of running the
code. Otherwise, the function invisibly returns NULL.

tar_invalidate 65

See Also

Other Target Markdown: tar_engine_knitr(), tar_noninteractive(), tar_toggle()

Examples

tar_interactive(message("In interactive mode."))

tar_invalidate Delete one or more metadata records (e.g. to rerun a target).

Description

Delete the metadata of records in _targets/meta/meta but keep the return values of targets in
_targets/objects/.

Usage

tar_invalidate(names, store = targets::tar_config_get("store"))

Arguments

names Names of the targets to remove from the metadata list. The object supplied to
names should be a tidyselect expression like any_of() or starts_with()
from tidyselect itself, or tar_described_as() to select target names based
on their descriptions.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

This function forces one or more targets to rerun on the next tar_make(), regardless of the cues
and regardless of how those targets are stored. After tar_invalidate(), you will still be able
to locate the data files with tar_path_target() and manually salvage them in an emergency.
However, tar_load() and tar_read() will not be able to read the data into R, and subsequent
calls to tar_make() will attempt to rerun those targets. For patterns recorded in the metadata, all
the branches will be invalidated. For patterns no longer in the metadata, branches are left alone.

Value

NULL (invisibly).

66 tar_language

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other clean: tar_delete(), tar_destroy(), tar_prune(), tar_prune_list(), tar_unversion()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_make()
tar_invalidate(starts_with("y")) # Only invalidates y1 and y2.
tar_make() # y1 and y2 rerun but return same values, so z is up to date.
})
}

tar_language Language

Description

These functions help with metaprogramming in packages built on top of targets.

Usage

tar_deparse_language(expr)

tar_deparse_safe(expr, collapse = "\n", backtick = TRUE)

tar_tidy_eval(expr, envir, tidy_eval)

tar_tidyselect_eval(names_quosure, choices)

tar_load 67

Arguments

expr A language object to modify or deparse.

collapse Character of length 1, delimiter in deparsing.

backtick logical indicating whether symbolic names should be enclosed in backticks if
they do not follow the standard syntax.

envir An environment to find objects for tidy evaluation.

tidy_eval Logical of length 1, whether to apply tidy evaluation.

names_quosure An rlang quosure with tidyselect expressions.

choices A character vector of choices for character elements returned by tidy evaluation.

Details

• tar_deparse_language() is a wrapper around tar_deparse_safe() which leaves character
vectors and NULL objects alone, which helps with subsequent user input validation.

• tar_deparse_safe() is a wrapper around base::deparse() with a custom set of fast default
settings and guardrails to ensure the output always has length 1.

• tar_tidy_eval() applies tidy evaluation to a language object and returns another language
object.

• tar_tidyselect_eval() applies tidyselect selection with some special guardrails around
NULL inputs.

See Also

Other utilities to extend targets: tar_assert, tar_condition, tar_test()

Examples

tar_deparse_language(quote(run_model()))

tar_load Load the values of targets.

Description

Load the return values of targets into the current environment (or the environment of your choosing).
For a typical target, the return value lives in a file in _targets/objects/. For dynamic files (i.e.
format = "file") the paths loaded in place of the values. tar_load_everything() is shorthand
for tar_load(everything()) to load all targets.

tar_load() uses non-standard evaluation in the names argument (example: tar_load(names =
everything())), whereas tar_load_raw() uses standard evaluation for names (example: tar_load_raw(names
= quote(everything()))).

68 tar_load

Usage

tar_load(
names,
branches = NULL,
meta = targets::tar_meta(targets_only = TRUE, store = store),
strict = TRUE,
silent = FALSE,
envir = parent.frame(),
store = targets::tar_config_get("store")

)

tar_load_raw(
names,
branches = NULL,
meta = tar_meta(store = store),
strict = TRUE,
silent = FALSE,
envir = parent.frame(),
store = targets::tar_config_get("store")

)

Arguments

names Names of the targets to load. tar_load() uses non-standard evaluation in
the names argument (example: tar_load(names = everything())), whereas
tar_load_raw() uses standard evaluation for names (example: tar_load_raw(names
= quote(everything()))).
The object supplied to names should be a tidyselect expression like any_of()
or starts_with() from tidyselect itself, or tar_described_as() to select
target names based on their descriptions.

branches Integer of indices of the branches to load for any targets that are patterns.

meta Data frame of target metadata from tar_meta().

strict Logical of length 1, whether to error out if one of the selected targets is in
the metadata but cannot be loaded. Set to FALSE to just load the targets in the
metadata that can be loaded and skip the others.

silent Logical of length 1. Only relevant when strict is FALSE. If silent is FALSE
and strict is FALSE, then a message will be printed if a target is in the metadata
but cannot be loaded. However, load failures will not stop other targets from
being loaded.

envir R environment in which to load target return values.

store Character of length 1, directory path to the data store of the pipeline.

Value

Nothing.

tar_load 69

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

Cloud target data versioning

Some buckets in Amazon S3 or Google Cloud Storage are "versioned", which means they track
historical versions of each data object. If you use targets with cloud storage (https://books.
ropensci.org/targets/cloud-storage.html) and versioning is turned on, then targets will
record each version of each target in its metadata.

Functions like tar_read() and tar_load() load the version recorded in the local metadata, which
may not be the same as the "current" version of the object in the bucket. Likewise, functions
tar_delete() and tar_destroy() only remove the version ID of each target as recorded in the
local metadata.

If you want to interact with the latest version of an object instead of the version ID recorded in the
local metadata, then you will need to delete the object from the metadata.

1. Make sure your local copy of the metadata is current and up to date. You may need to run
tar_meta_download() or tar_meta_sync() first.

2. Run tar_unversion() to remove the recorded version IDs of your targets in the local meta-
data.

3. With the version IDs gone from the local metadata, functions like tar_read() and tar_destroy()
will use the latest version of each target data object.

4. Optional: to back up the local metadata file with the version IDs deleted, use tar_meta_upload().

See Also

Other storage: tar_format(), tar_load_everything(), tar_objects(), tar_read()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_make()
ls() # Does not have "y1", "y2", or "z".
tar_load(starts_with("y"))

https://books.ropensci.org/targets/cloud-storage.html
https://books.ropensci.org/targets/cloud-storage.html

70 tar_load_everything

ls() # Has "y1" and "y2" but not "z".
tar_load_raw(quote(any_of("z")))
ls() # Has "y1", "y2", and "z".
})
}

tar_load_everything Load the values of all available targets.

Description

Shorthand for tar_load(everything()) to load all targets with entries in the metadata.

Usage

tar_load_everything(
branches = NULL,
meta = tar_meta(targets_only = TRUE, store = store),
strict = TRUE,
silent = FALSE,
envir = parent.frame(),
store = targets::tar_config_get("store")

)

Arguments

branches Integer of indices of the branches to load for any targets that are patterns.

meta Data frame of target metadata from tar_meta().

strict Logical of length 1, whether to error out if one of the selected targets is in
the metadata but cannot be loaded. Set to FALSE to just load the targets in the
metadata that can be loaded and skip the others.

silent Logical of length 1. Only relevant when strict is FALSE. If silent is FALSE
and strict is FALSE, then a message will be printed if a target is in the metadata
but cannot be loaded. However, load failures will not stop other targets from
being loaded.

envir R environment in which to load target return values.

store Character of length 1, directory path to the data store of the pipeline.

Value

Nothing.

See Also

Other storage: tar_format(), tar_load(), tar_objects(), tar_read()

tar_load_globals 71

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_make()
ls() # Does not have "y1", "y2", or "z".
tar_load_everything()
ls() # Has "y1", "y2", and "z".
})
}

tar_load_globals Load globals for debugging, testing, and prototyping

Description

Load user-defined packages, functions, global objects, and settings defined in the target script file
(default: _targets.R). This function is for debugging, testing, and prototyping only. It is not
recommended for use inside a serious pipeline or to report the results of a serious pipeline.

Usage

tar_load_globals(
envir = parent.frame(),
script = targets::tar_config_get("script")

)

Arguments

envir Environment to source the target script (default: _targets.R). Defaults to the
calling environment.

script Character of length 1, path to the target script file that defines the pipeline
(_targets.R by default). This path should be either an absolute path or a path
relative to the project root where you will call tar_make() and other functions.
When tar_make() and friends run the script from the current working directory.
If the argument NULL, the setting is not modified. Use tar_config_unset() to
delete a setting.

72 tar_load_globals

Details

This function first sources the target script file (default: _targets.R) to loads all user-defined func-
tions, global objects, and settings into the current R process. Then, it loads all the packages defined
in tar_option_get("packages") (default: (.packages())) using library() with lib.loc de-
fined in tar_option_get("library") (default: NULL).

Value

NULL (invisibly).

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other debug: tar_traceback(), tar_workspace(), tar_workspaces()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set(packages = "callr")
analyze_data <- function(data) {
summary(data)

}
list(

tar_target(x, 1 + 1),
tar_target(y, 1 + 1)

)
}, ask = FALSE)
tar_load_globals()
print(analyze_data)
print("callr" %in% (.packages()))
})
}

tar_make 73

tar_make Run a pipeline of targets.

Description

Run the pipeline you defined in the targets script file (default: _targets.R). tar_make() runs
the correct targets in the correct order and stores the return values in _targets/objects/. Use
tar_read() to read a target back into R, and see https://docs.ropensci.org/targets/reference/
index.html#clean to manage output files.

Usage

tar_make(
names = NULL,
shortcut = targets::tar_config_get("shortcut"),
reporter = targets::tar_config_get("reporter_make"),
seconds_meta_append = targets::tar_config_get("seconds_meta_append"),
seconds_meta_upload = targets::tar_config_get("seconds_meta_upload"),
seconds_reporter = targets::tar_config_get("seconds_reporter"),
seconds_interval = targets::tar_config_get("seconds_interval"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function, reporter),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store"),
garbage_collection = NULL,
use_crew = targets::tar_config_get("use_crew"),
terminate_controller = TRUE,
as_job = targets::tar_config_get("as_job")

)

Arguments

names Names of the targets to run or check. Set to NULL to check/run all the targets
(default). The object supplied to names should be a tidyselect expression like
any_of() or starts_with() from tidyselect itself, or tar_described_as()
to select target names based on their descriptions.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as the
dependency graph goes. shortcut = TRUE increases speed if there are a lot of
up-to-date targets, but it assumes all the dependencies are up to date, so please
use with caution. It relies on stored metadata for information about upstream
dependencies. shortcut = TRUE only works if you set names.

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets run in the pipeline. Defaults to tar_config_get("reporter_make").
Choices:

https://docs.ropensci.org/targets/reference/index.html#clean
https://docs.ropensci.org/targets/reference/index.html#clean

74 tar_make

• "silent": print nothing.
• "summary": print a running total of the number of each targets in each status

category (queued, dispatched, skipped, completed, canceled, or errored).
Also show a timestamp ("%H:%M %OS2" strptime() format) of the last time
the progress changed and printed to the screen.

• "timestamp": same as the "verbose" reporter except that each .message
begins with a time stamp.

• "timestamp_positives": same as the "timestamp" reporter except with-
out messages for skipped targets.

• "verbose": print messages for individual targets as they start, finish, or
are skipped. Each individual target-specific time (e.g. "3.487 seconds") is
strictly the elapsed runtime of the target and does not include steps like data
retrieval and output storage.

• "verbose_positives": same as the "verbose" reporter except without
messages for skipped targets.

seconds_meta_append

Positive numeric of length 1 with the minimum number of seconds between
saves to the local metadata and progress files in the data store. Higher values
generally make the pipeline run faster, but unsaved work (in the event of a crash)
is not up to date. When the pipeline ends, all the metadata and progress data is
saved immediately, regardless of seconds_meta_append.

seconds_meta_upload

Positive numeric of length 1 with the minimum number of seconds between
uploads of the metadata and progress data to the cloud (see https://books.
ropensci.org/targets/cloud-storage.html). Higher values generally make
the pipeline run faster, but unsaved work (in the event of a crash) may not be
backed up to the cloud. When the pipeline ends, all the metadata and progress
data is uploaded immediately, regardless of seconds_meta_upload.

seconds_reporter

Positive numeric of length 1 with the minimum number of seconds between
times when the reporter prints progress messages to the R console.

seconds_interval

Deprecated on 2023-08-24 (version 1.2.2.9001). Use seconds_meta_append,
seconds_meta_upload, and seconds_reporter instead.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.

https://books.ropensci.org/targets/cloud-storage.html
https://books.ropensci.org/targets/cloud-storage.html

tar_make 75

The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

garbage_collection

Deprecated. Use the garbage_collection argument of tar_option_set()
instead to run garbage collection at regular intervals in a pipeline, or use the
argument of the same name in tar_target() to activate garbage collection for
a specific target.

use_crew Logical of length 1, whether to use crew if the controller option is set in
tar_option_set() in the target script (_targets.R). See https://books.
ropensci.org/targets/crew.html for details.

terminate_controller

Logical of length 1. For a crew-integrated pipeline, whether to terminate the
controller after stopping or finishing the pipeline. This should almost always be
set to TRUE, but FALSE combined with callr_function = NULL will allow you to
get the running controller using tar_option_get("controller") for debug-
ging purposes. For example, tar_option_get("controller")$summary()
produces a worker-by-worker summary of the work assigned and completed,
tar_option_get("controller")$queue is the list of unresolved tasks, and
tar_option_get("controller")$results is the list of tasks that completed
but were not collected with pop(). You can manually terminate the controller
with tar_option_get("controller")$summary() to close down the dispatcher
and worker processes.

as_job TRUE to run as an RStudio IDE / Posit Workbench job, if running on RStudio
IDE / Posit Workbench. FALSE to run as a callr process in the main R session
(depending on the callr_function argument). If as_job is TRUE, then the
rstudioapi package must be installed.

Value

NULL except if callr_function = callr::r_bg(), in which case a handle to the callr background
process is returned. Either way, the value is invisibly returned.

https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html

76 tar_make_clustermq

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other pipeline: tar_make_clustermq(), tar_make_future()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_make(starts_with("y")) # Only processes y1 and y2.
Distributed computing with crew:
if (requireNamespace("crew", quietly = TRUE)) {
tar_script({

library(targets)
library(tarchetypes)
tar_option_set(controller = crew::controller_local())
list(

tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_make()
}
})
}

tar_make_clustermq Superseded. Run a pipeline with persistent clustermq workers.

Description

Superseded. Use tar_make() with crew: https://books.ropensci.org/targets/crew.html.

https://books.ropensci.org/targets/crew.html

tar_make_clustermq 77

Usage

tar_make_clustermq(
names = NULL,
shortcut = targets::tar_config_get("shortcut"),
reporter = targets::tar_config_get("reporter_make"),
seconds_meta_append = targets::tar_config_get("seconds_meta_append"),
seconds_meta_upload = targets::tar_config_get("seconds_meta_upload"),
seconds_reporter = targets::tar_config_get("seconds_reporter"),
seconds_interval = targets::tar_config_get("seconds_interval"),
workers = targets::tar_config_get("workers"),
log_worker = FALSE,
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function, reporter),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store"),
garbage_collection = NULL

)

Arguments

names Names of the targets to run or check. Set to NULL to check/run all the targets
(default). The object supplied to names should be a tidyselect expression like
any_of() or starts_with() from tidyselect itself, or tar_described_as()
to select target names based on their descriptions.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as the
dependency graph goes. shortcut = TRUE increases speed if there are a lot of
up-to-date targets, but it assumes all the dependencies are up to date, so please
use with caution. It relies on stored metadata for information about upstream
dependencies. shortcut = TRUE only works if you set names.

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets run in the pipeline. Defaults to tar_config_get("reporter_make").
Choices:

• "silent": print nothing.
• "summary": print a running total of the number of each targets in each status

category (queued, dispatched, skipped, completed, canceled, or errored).
Also show a timestamp ("%H:%M %OS2" strptime() format) of the last time
the progress changed and printed to the screen.

• "timestamp": same as the "verbose" reporter except that each .message
begins with a time stamp.

• "timestamp_positives": same as the "timestamp" reporter except with-
out messages for skipped targets.

• "verbose": print messages for individual targets as they start, finish, or
are skipped. Each individual target-specific time (e.g. "3.487 seconds") is
strictly the elapsed runtime of the target and does not include steps like data
retrieval and output storage.

78 tar_make_clustermq

• "verbose_positives": same as the "verbose" reporter except without
messages for skipped targets.

seconds_meta_append

Positive numeric of length 1 with the minimum number of seconds between
saves to the local metadata and progress files in the data store. Higher values
generally make the pipeline run faster, but unsaved work (in the event of a crash)
is not up to date. When the pipeline ends, all the metadata and progress data is
saved immediately, regardless of seconds_meta_append.

seconds_meta_upload

Positive numeric of length 1 with the minimum number of seconds between
uploads of the metadata and progress data to the cloud (see https://books.
ropensci.org/targets/cloud-storage.html). Higher values generally make
the pipeline run faster, but unsaved work (in the event of a crash) may not be
backed up to the cloud. When the pipeline ends, all the metadata and progress
data is uploaded immediately, regardless of seconds_meta_upload.

seconds_reporter

Positive numeric of length 1 with the minimum number of seconds between
times when the reporter prints progress messages to the R console.

seconds_interval

Deprecated on 2023-08-24 (version 1.2.2.9001). Use seconds_meta_append,
seconds_meta_upload, and seconds_reporter instead.

workers Positive integer, number of persistent clustermq workers to create.

log_worker Logical, whether to write a log file for each worker. Same as the log_worker
argument of clustermq::Q() and clustermq::workers().

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function

https://books.ropensci.org/targets/cloud-storage.html
https://books.ropensci.org/targets/cloud-storage.html

tar_make_clustermq 79

call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

garbage_collection

Deprecated. Use the garbage_collection argument of tar_option_set()
instead to run garbage collection at regular intervals in a pipeline, or use the
argument of the same name in tar_target() to activate garbage collection for
a specific target.

Details

tar_make_clustermq() is like tar_make() except that targets run in parallel on persistent work-
ers. A persistent worker is an R process that runs for a long time and runs multiple targets during
its lifecycle. Persistent workers launch as soon as the pipeline reaches an outdated target with
deployment = "worker", and they keep running until the pipeline starts to wind down.

To configure tar_make_clustermq(), you must configure the clustermq package. To do this, set
global options clustermq.scheduler and clustermq.template inside the target script file (de-
fault: _targets.R). To read more about configuring clustermq for your scheduler, visit https://
mschubert.github.io/clustermq/articles/userguide.html#configuration # nolint or https:
//books.ropensci.org/targets/hpc.html. clustermq is not a strict dependency of targets,
so you must install clustermq yourself.

Value

NULL except if callr_function = callr::r_bg(), in which case a handle to the callr background
process is returned. Either way, the value is invisibly returned.

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other pipeline: tar_make(), tar_make_future()

Examples

if (!identical(tolower(Sys.info()[["sysname"]]), "windows")) {
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.

https://mschubert.github.io/clustermq/articles/userguide.html#configuration
https://mschubert.github.io/clustermq/articles/userguide.html#configuration
https://books.ropensci.org/targets/hpc.html
https://books.ropensci.org/targets/hpc.html

80 tar_make_future

tar_script({
library(targets)
library(tarchetypes)
options(clustermq.scheduler = "multiprocess") # Does not work on Windows.
tar_option_set()
list(tar_target(x, 1 + 1))

}, ask = FALSE)
tar_make_clustermq()
})
}
}

tar_make_future Superseded. Run a pipeline of targets in parallel with transient future
workers.

Description

Superseded. Use tar_make() with crew: https://books.ropensci.org/targets/crew.html.

Usage

tar_make_future(
names = NULL,
shortcut = targets::tar_config_get("shortcut"),
reporter = targets::tar_config_get("reporter_make"),
seconds_meta_append = targets::tar_config_get("seconds_meta_append"),
seconds_meta_upload = targets::tar_config_get("seconds_meta_upload"),
seconds_reporter = targets::tar_config_get("seconds_reporter"),
seconds_interval = targets::tar_config_get("seconds_interval"),
workers = targets::tar_config_get("workers"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function, reporter),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store"),
garbage_collection = NULL

)

Arguments

names Names of the targets to run or check. Set to NULL to check/run all the targets
(default). The object supplied to names should be a tidyselect expression like
any_of() or starts_with() from tidyselect itself, or tar_described_as()
to select target names based on their descriptions.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as the
dependency graph goes. shortcut = TRUE increases speed if there are a lot of

https://books.ropensci.org/targets/crew.html

tar_make_future 81

up-to-date targets, but it assumes all the dependencies are up to date, so please
use with caution. It relies on stored metadata for information about upstream
dependencies. shortcut = TRUE only works if you set names.

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets run in the pipeline. Defaults to tar_config_get("reporter_make").
Choices:

• "silent": print nothing.
• "summary": print a running total of the number of each targets in each status

category (queued, dispatched, skipped, completed, canceled, or errored).
Also show a timestamp ("%H:%M %OS2" strptime() format) of the last time
the progress changed and printed to the screen.

• "timestamp": same as the "verbose" reporter except that each .message
begins with a time stamp.

• "timestamp_positives": same as the "timestamp" reporter except with-
out messages for skipped targets.

• "verbose": print messages for individual targets as they start, finish, or
are skipped. Each individual target-specific time (e.g. "3.487 seconds") is
strictly the elapsed runtime of the target and does not include steps like data
retrieval and output storage.

• "verbose_positives": same as the "verbose" reporter except without
messages for skipped targets.

seconds_meta_append

Positive numeric of length 1 with the minimum number of seconds between
saves to the local metadata and progress files in the data store. Higher values
generally make the pipeline run faster, but unsaved work (in the event of a crash)
is not up to date. When the pipeline ends, all the metadata and progress data is
saved immediately, regardless of seconds_meta_append.

seconds_meta_upload

Positive numeric of length 1 with the minimum number of seconds between
uploads of the metadata and progress data to the cloud (see https://books.
ropensci.org/targets/cloud-storage.html). Higher values generally make
the pipeline run faster, but unsaved work (in the event of a crash) may not be
backed up to the cloud. When the pipeline ends, all the metadata and progress
data is uploaded immediately, regardless of seconds_meta_upload.

seconds_reporter

Positive numeric of length 1 with the minimum number of seconds between
times when the reporter prints progress messages to the R console.

seconds_interval

Deprecated on 2023-08-24 (version 1.2.2.9001). Use seconds_meta_append,
seconds_meta_upload, and seconds_reporter instead.

workers Positive integer, maximum number of transient future workers allowed to run
at any given time.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,

https://books.ropensci.org/targets/cloud-storage.html
https://books.ropensci.org/targets/cloud-storage.html

82 tar_make_future

e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

garbage_collection

Deprecated. Use the garbage_collection argument of tar_option_set()
instead to run garbage collection at regular intervals in a pipeline, or use the
argument of the same name in tar_target() to activate garbage collection for
a specific target.

Details

This function is like tar_make() except that targets run in parallel with transient future workers. It
requires that you declare your future::plan() inside the target script file (default: _targets.R).
future is not a strict dependency of targets, so you must install future yourself.

To configure tar_make_future() with a computing cluster, see the future.batchtools package
documentation.

Value

NULL except if callr_function = callr::r_bg(), in which case a handle to the callr background
process is returned. Either way, the value is invisibly returned.

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is

tar_manifest 83

running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other pipeline: tar_make(), tar_make_clustermq()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
future::plan(future::multisession, workers = 2)
list(
tar_target(x, 1 + 1),
tar_target(y, 1 + 1)

)
}, ask = FALSE)
tar_make_future()
})
}

tar_manifest Produce a data frame of information about your targets.

Description

Along with tar_visnetwork() and tar_glimpse(), tar_manifest() helps check that you con-
structed your pipeline correctly.

Usage

tar_manifest(
names = NULL,
fields = tidyselect::any_of(c("name", "command", "pattern", "description")),
drop_missing = TRUE,
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script")

)

84 tar_manifest

Arguments

names Names of the targets to show. Set to NULL to show all the targets (default).
Otherwise, the object supplied to names should be a tidyselect expression like
any_of() or starts_with() from tidyselect itself, or tar_described_as()
to select target names based on their descriptions.

fields Names of the fields, or columns, to show. Set to NULL to show all the fields
(default). Otherwise, the value of fields should be a tidyselect expression
like starts_with() to select the columns to show in the output. Possible fields
are below. All of them can be set in tar_target(), tar_target_raw(), or
tar_option_set().

• name: Name of the target.
• command: the R command that runs when the target runs.
• description: custom free-form text description of the target, if available.
• pattern: branching pattern of the target, if applicable.
• format: Storage format.
• repository: Storage repository.
• iteration: Iteration mode for branching.
• error: Error mode, what to do when the target fails.
• memory: Memory mode, when to keep targets in memory.
• storage: Storage mode for high-performance computing scenarios.
• retrieval: Retrieval mode for high-performance computing scenarios.
• deployment: Where/whether to deploy the target in high-performance com-

puting scenarios.
• priority: Numeric of length 1 between 0 and 1. Controls which targets get

deployed first when multiple competing targets are ready simultaneously.
Targets with priorities closer to 1 get dispatched earlier (and polled earlier
in tar_make_future()).

• resources: A list of target-specific resource requirements for tar_make_future().
• cue_mode: Cue mode from tar_cue().
• cue_depend: Depend cue from tar_cue().
• cue_expr: Command cue from tar_cue().
• cue_file: File cue from tar_cue().
• cue_format: Format cue from tar_cue().
• cue_repository: Repository cue from tar_cue().
• cue_iteration: Iteration cue from tar_cue().
• packages: List columns of packages loaded before running the target.
• library: List column of library paths to load the packages.

drop_missing Logical of length 1, whether to automatically omit empty columns and columns
with all missing values.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

tar_manifest 85

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

Value

A data frame of information about the targets in the pipeline. Rows appear in topological order (the
order they will run without any influence from parallel computing or priorities).

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other inspect: tar_deps(), tar_network(), tar_outdated(), tar_sitrep(), tar_validate()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set()
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2),
tar_target(m, z, pattern = map(z), description = "branching over z"),

86 tar_mermaid

tar_target(c, z, pattern = cross(z))
)

}, ask = FALSE)
tar_manifest()
tar_manifest(fields = any_of(c("name", "command")))
tar_manifest(fields = any_of("command"))
tar_manifest(fields = starts_with("cue"))
})
}

tar_mermaid mermaid.js dependency graph.

Description

Visualize the dependency graph with a static mermaid.js graph.

Usage

tar_mermaid(
targets_only = FALSE,
names = NULL,
shortcut = FALSE,
allow = NULL,
exclude = ".Random.seed",
outdated = TRUE,
label = targets::tar_config_get("label"),
label_width = targets::tar_config_get("label_width"),
legend = TRUE,
color = TRUE,
reporter = targets::tar_config_get("reporter_outdated"),
seconds_reporter = targets::tar_config_get("seconds_reporter"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

targets_only Logical, whether to restrict the output to just targets (FALSE) or to also include
global functions and objects.

names Names of targets. The graph visualization will operate only on these targets
(and unless shortcut is TRUE, all the targets upstream as well). Selecting a
small subgraph using names could speed up the load time of the visualization.
Unlike allow, names is invoked before the graph is generated. Set to NULL

tar_mermaid 87

to check/run all the targets (default). Otherwise, the object supplied to names
should be a tidyselect expression like any_of() or starts_with() from
tidyselect itself, or tar_described_as() to select target names based on
their descriptions.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as
the dependency graph goes. If TRUE, then the function only checks the targets in
names and uses stored metadata for information about upstream dependencies as
needed. shortcut = TRUE increases speed if there are a lot of up-to-date targets,
but it assumes all the dependencies are up to date, so please use with caution.
Also, shortcut = TRUE only works if you set names.

allow Optional, define the set of allowable vertices in the graph. Unlike names, allow
is invoked only after the graph is mostly resolved, so it will not speed up execu-
tion. Set to NULL to allow all vertices in the pipeline and environment (default).
Otherwise, you can supply symbols or tidyselect helpers like starts_with().

exclude Optional, define the set of exclude vertices from the graph. Unlike names,
exclude is invoked only after the graph is mostly resolved, so it will not speed
up execution. Set to NULL to exclude no vertices. Otherwise, you can supply
symbols or tidyselect helpers like any_of() and starts_with().

outdated Logical, whether to show colors to distinguish outdated targets from up-to-date
targets. (Global functions and objects still show these colors.) Looking for
outdated targets takes a lot of time for large pipelines with lots of branches, and
setting outdated to FALSE is a nice way to speed up the graph if you only want
to see dependency relationships and pipeline progress.

label Character vector of one or more aesthetics to add to the vertex labels. Can con-
tain "description" to show each target’s custom description, "time" to show
total runtime, "size" to show total storage size, or "branches" to show the
number of branches in each pattern. You can choose multiple aesthetics at once,
e.g. label = c("description", "time"). Only the description is enabled by
default.

label_width Positive numeric of length 1, maximum width (in number of characters) of the
node labels.

legend Logical of length 1, whether to display the legend.

color Logical of length 1, whether to color the graph vertices by status.

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets are checked. Choices:

• "silent": print nothing.
• "forecast": print running totals of the checked and outdated targets found

so far.
seconds_reporter

Positive numeric of length 1 with the minimum number of seconds between
times when the reporter prints progress messages to the R console.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global

88 tar_mermaid

environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

mermaid.js is a JavaScript library for constructing static visualizations of graphs.

Value

A character vector of lines of code of the mermaid.js graph. You can visualize the graph by copying
the text into a public online mermaid.js editor or a mermaid GitHub code chunk (https://github.blog/2022-02-14-include-diagrams-markdown-files-mermaid/).
Alternatively, you can render it inline in an R Markdown or Quarto document using a results =
"asis" code chunk like so:

```{r, results = "asis", echo = FALSE}
cat(c("```{mermaid}", targets::tar_mermaid(), "```"), sep = "\n")
```

Dependency graph

The dependency graph of a pipeline is a directed acyclic graph (DAG) where each node indicates
a target or global object and each directed edge indicates where a downstream node depends on
an upstream node. The DAG is not always a tree, but it never contains a cycle because no target
is allowed to directly or indirectly depend on itself. The dependency graph should show a natural

tar_meta 89

progression of work from left to right. targets uses static code analysis to create the graph, so
the order of tar_target() calls in the _targets.R file does not matter. However, targets does
not support self-referential loops or other cycles. For more information on the dependency graph,
please read https://books.ropensci.org/targets/targets.html#dependencies.

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other visualize: tar_glimpse(), tar_visnetwork()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set()
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2, description = "sum of two other sums")

)
})
Copy the text into a mermaid.js online editor
or a mermaid GitHub code chunk:
tar_mermaid()
})
}

tar_meta Read a project’s metadata.

Description

Read the metadata of all recorded targets and global objects.

https://books.ropensci.org/targets/targets.html#dependencies

90 tar_meta

Usage

tar_meta(
names = NULL,
fields = NULL,
targets_only = FALSE,
complete_only = FALSE,
store = targets::tar_config_get("store")

)

Arguments

names Optional, names of the targets. If supplied, tar_meta() only returns metadata
on these targets. You can supply symbols or tidyselect helpers like any_of()
and starts_with(). If NULL, all names are selected.

fields Optional, names of columns/fields to select. If supplied, tar_meta() only re-
turns the selected metadata columns. If NULL, all fields are selected. You can
supply symbols or tidyselect helpers like any_of() and starts_with(). The
name column is always included first no matter what you select. Choices:

• name: name of the target or global object.
• type: type of the object: either "function" or "object" for global objects,

and "stem", "branch", "map", or "cross" for targets.
• data: hash of the output data.
• command: hash of the target’s deparsed command.
• depend: hash of the immediate upstream dependencies of the target.
• seed: random number generator seed with which the target ran. A target’s

random number generator seed is a deterministic function of its name. In
this way, each target runs with a reproducible seed so someone else running
the same pipeline should get the same results, and no two targets in the
same pipeline share the same seed. (Even dynamic branches have different
names and thus different seeds.) You can recover the seed of a completed
target with tar_meta(your_target, seed) and run tar_seed_set() on
the result to locally recreate the target’s initial RNG state.

• path: A list column of paths to target data. Usually, each element is a
single path, but there could be multiple paths per target for dynamic files
(i.e. tar_target(format = "file")).

• time: POSIXct object with the time the target’s data in storage was last
modified. If the target stores no local file, then the time stamp corre-
sponds to the time the target last ran successfully. Only targets that run
commands have time stamps: just non-branching targets and individual dy-
namic branches. Displayed in the current time zone of the system. If there
are multiple outputs for that target, as with file targets, then the maximum
time is shown.

• size: hash of the sum of all the bytes of the files at path.
• bytes: total file size in bytes of all files in path.
• format: character, one of the admissible data storage formats. See the
format argument in the tar_target() help file for details.

tar_meta 91

• iteration: character, either "list" or "vector" to describe the iteration
and aggregation mode of the target. See the iteration argument in the
tar_target() help file for details.

• parent: for branches, name of the parent pattern.
• children: list column, names of the children of targets that have them.

These include buds of stems and branches of patterns.
• seconds: number of seconds it took to run the target.
• warnings: character string of warning messages from the last run of the

target. Only the first 50 warnings are available, and only the first 2048
characters of the concatenated warning messages.

• error: character string of the error message if the target errored.

targets_only Logical, whether to just show information about targets or also return metadata
on functions and other global objects.

complete_only Logical, whether to return only complete rows (no NA values).

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

A metadata row only updates when the target completes. tar_progress() shows information on
targets that are running. That is why the number of branches may disagree between tar_meta()
and tar_progress() for actively running pipelines.

Value

A data frame with one row per target/object and the selected fields.

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

Cloud metadata

Metadata files help targets read data objects and decide if the pipeline is up to date. Usu-
ally, these metadata files live in files in the local _targets/meta/ folder in your project, e.g.
_targets/meta/meta. But in addition, if you set repository to anything other than "local"
in tar_option_set() in _targets.R, then tar_make() continuously uploads the metadata files to
the bucket you specify in resources. tar_meta_delete() will delete those files from the cloud,
and so will tar_destroy() if destroy is set to either "all" or "cloud".

92 tar_meta_delete

Other functions in targets, such as tar_meta(), tar_visnetwork(), tar_outdated(), and
tar_invalidate(), use the local metadata only and ignore the copies on the cloud. So if you
are working on a different computer than the one running the pipeline, you will need to down-
load the cloud metadata to your current machine using tar_meta_download(). Other functions
tar_meta_upload(), tar_meta_sync(), and tar_meta_delete() also manage metadata across
the cloud and the local file system.

Remarks:

• The repository_meta option in tar_option_set() is actually what controls where the
metadata lives in the cloud, but it defaults to repository.

• Like tar_make(), tar_make_future() and tar_make_clustermq() also continuously up-
load metadata files to the cloud bucket specified in resources.

• tar_meta_download() and related functions need to run _targets.R to detect tar_option_set()
options repository_meta and resources, so please be aware of side effects that may happen
running your custom _targets.R file.

See Also

Other metadata: tar_meta_delete(), tar_meta_download(), tar_meta_sync(), tar_meta_upload()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_meta()
tar_meta(starts_with("y_")) # see also any_of()
})
}

tar_meta_delete Delete metadata.

Description

Delete the project metadata files from the local file system, the cloud, or both.

tar_meta_delete 93

Usage

tar_meta_delete(
meta = TRUE,
progress = TRUE,
process = TRUE,
crew = TRUE,
verbose = TRUE,
delete = "all",
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

meta Logical of length 1, whether to process the main metadata file at _targets/meta/meta.

progress Logical of length 1, whether to process the progress file at _targets/meta/progress.

process Logical of length 1, whether to process the process file at _targets/meta/process.

crew Logical of length 1, whether to process the crew file at _targets/meta/crew.
Only exists if running targets with crew.

verbose Logical of length 1, whether to print informative console messages.

delete Character of length 1, which location to delete the files. Choose "local" for
local files, "cloud" for files on the cloud, or "all" to delete metadata files from
both the local file system and the cloud.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

See Also

Other metadata: tar_meta(), tar_meta_download(), tar_meta_sync(), tar_meta_upload()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set(
resources = tar_resources(

94 tar_meta_download

aws = tar_resources_aws(
bucket = "YOUR_BUCKET_NAME",
prefix = "YOUR_PROJECT_NAME"

)
),
repository = "aws"

)
list(

tar_target(x, data.frame(x = seq_len(2), y = seq_len(2)))
)

})
tar_make()
tar_meta_delete()
})
}

tar_meta_download download local metadata to the cloud.

Description

download local metadata files to the cloud location (repository, bucket, and prefix) you set in
tar_option_set() in _targets.R.

Usage

tar_meta_download(
meta = TRUE,
progress = TRUE,
process = TRUE,
crew = TRUE,
verbose = TRUE,
strict = FALSE,
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

meta Logical of length 1, whether to process the main metadata file at _targets/meta/meta.

progress Logical of length 1, whether to process the progress file at _targets/meta/progress.

process Logical of length 1, whether to process the process file at _targets/meta/process.

crew Logical of length 1, whether to process the crew file at _targets/meta/crew.
Only exists if running targets with crew.

verbose Logical of length 1, whether to print informative console messages.

strict Logical of length 1. TRUE to error out if the file does not exist in the bucket,
FALSE to proceed without an error or warning. If strict is FALSE and verbose
is TRUE, then an informative message will print to the R console.

tar_meta_sync 95

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

See Also

Other metadata: tar_meta(), tar_meta_delete(), tar_meta_sync(), tar_meta_upload()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set(
resources = tar_resources(

aws = tar_resources_aws(
bucket = "YOUR_BUCKET_NAME",
prefix = "YOUR_PROJECT_NAME"

)
),
repository = "aws"

)
list(

tar_target(x, data.frame(x = seq_len(2), y = seq_len(2)))
)

})
tar_make()
tar_meta_download()
})
}

tar_meta_sync Synchronize cloud metadata.

Description

Synchronize metadata in a cloud bucket with metadata in the local data store.

96 tar_meta_sync

Usage

tar_meta_sync(
meta = TRUE,
progress = TRUE,
process = TRUE,
crew = TRUE,
verbose = TRUE,
prefer_local = TRUE,
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

meta Logical of length 1, whether to process the main metadata file at _targets/meta/meta.

progress Logical of length 1, whether to process the progress file at _targets/meta/progress.

process Logical of length 1, whether to process the process file at _targets/meta/process.

crew Logical of length 1, whether to process the crew file at _targets/meta/crew.
Only exists if running targets with crew.

verbose Logical of length 1, whether to print informative console messages.

prefer_local Logical of length 1 to control which copy of each metadata file takes precedence
if the local hash and cloud hash are different but the time stamps are the same.
Set to TRUE to upload the local data file in that scenario, FALSE to download the
cloud file.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

tar_meta_sync() synchronizes the local and cloud copies of all the metadata files of the pipeline
so that both have the most recent copy. For each metadata file, if the local file does not exist or is
older than the cloud file, then the cloud file is downloaded to the local file path. Conversely, if the
cloud file is older or does not exist, then the local file is uploaded to the cloud. If the time stamps of
these files are equal, use the prefer_local argument to determine which copy takes precedence.

See Also

Other metadata: tar_meta(), tar_meta_delete(), tar_meta_download(), tar_meta_upload()

tar_meta_upload 97

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set(
resources = tar_resources(

aws = tar_resources_aws(
bucket = "YOUR_BUCKET_NAME",
prefix = "YOUR_PROJECT_NAME"

)
),
repository = "aws"

)
list(

tar_target(x, data.frame(x = seq_len(2), y = seq_len(2)))
)

}, ask = FALSE)
tar_make()
tar_meta_sync()
})
}

tar_meta_upload Upload local metadata to the cloud.

Description

Upload local metadata files to the cloud location (repository, bucket, and prefix) you set in tar_option_set()
in _targets.R.

Usage

tar_meta_upload(
meta = TRUE,
progress = TRUE,
process = TRUE,
crew = TRUE,
verbose = TRUE,
strict = FALSE,
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

meta Logical of length 1, whether to process the main metadata file at _targets/meta/meta.

98 tar_meta_upload

progress Logical of length 1, whether to process the progress file at _targets/meta/progress.

process Logical of length 1, whether to process the process file at _targets/meta/process.

crew Logical of length 1, whether to process the crew file at _targets/meta/crew.
Only exists if running targets with crew.

verbose Logical of length 1, whether to print informative console messages.

strict Logical of length 1. TRUE to error out if the file does not exist locally, FALSE to
proceed without an error or warning. If strict is FALSE and verbose is TRUE,
then an informative message will print to the R console.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

See Also

Other metadata: tar_meta(), tar_meta_delete(), tar_meta_download(), tar_meta_sync()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set(
resources = tar_resources(

aws = tar_resources_aws(
bucket = "YOUR_BUCKET_NAME",
prefix = "YOUR_PROJECT_NAME"

)
),
repository = "aws"

)
list(

tar_target(x, data.frame(x = seq_len(2), y = seq_len(2)))
)

}, ask = FALSE)
tar_make()
tar_meta_upload()
})
}

tar_name 99

tar_name Get the name of the target currently running.

Description

Get the name of the target currently running.

Usage

tar_name(default = "target")

Arguments

default Character, value to return if tar_name() is called on its own outside a targets
pipeline. Having a default lets users run things without tar_make(), which
helps peel back layers of code and troubleshoot bugs.

Value

Character of length 1. If called inside a pipeline, tar_name() returns name of the target currently
running. Otherwise, the return value is default.

See Also

Other utilities: tar_active(), tar_backoff(), tar_call(), tar_cancel(), tar_definition(),
tar_described_as(), tar_envir(), tar_format_get(), tar_group(), tar_path(), tar_path_script(),
tar_path_script_support(), tar_path_store(), tar_path_target(), tar_source(), tar_store(),
tar_unblock_process()

Examples

tar_name()
tar_name(default = "custom_target_name")
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script(tar_target(x, tar_name()), ask = FALSE)
tar_make()
tar_read(x)
})
}

100 tar_network

tar_network Return the vertices and edges of a pipeline dependency graph.

Description

Analyze the pipeline defined in the target script file (default: _targets.R) and return the vertices
and edges of the directed acyclic graph of dependency relationships.

Usage

tar_network(
targets_only = FALSE,
names = NULL,
shortcut = FALSE,
allow = NULL,
exclude = NULL,
outdated = TRUE,
reporter = targets::tar_config_get("reporter_outdated"),
seconds_reporter = targets::tar_config_get("seconds_reporter"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function, reporter),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

targets_only Logical, whether to restrict the output to just targets (FALSE) or to also include
imported global functions and objects.

names Names of targets. The graph visualization will operate only on these targets
(and unless shortcut is TRUE, all the targets upstream as well). Selecting a
small subgraph using names could speed up the load time of the visualization.
Unlike allow, names is invoked before the graph is generated. Set to NULL
to check/run all the targets (default). Otherwise, the object supplied to names
should be a tidyselect expression like any_of() or starts_with() from
tidyselect itself, or tar_described_as() to select target names based on
their descriptions.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as
the dependency graph goes. If TRUE, then the function only checks the targets in
names and uses stored metadata for information about upstream dependencies as
needed. shortcut = TRUE increases speed if there are a lot of up-to-date targets,
but it assumes all the dependencies are up to date, so please use with caution.
Also, shortcut = TRUE only works if you set names.

tar_network 101

allow Optional, define the set of allowable vertices in the graph. Unlike names, allow
is invoked only after the graph is mostly resolved, so it will not speed up execu-
tion. Set to NULL to allow all vertices in the pipeline and environment (default).
Otherwise, you can supply symbols or tidyselect helpers like starts_with().

exclude Optional, define the set of exclude vertices from the graph. Unlike names,
exclude is invoked only after the graph is mostly resolved, so it will not speed
up execution. Set to NULL to exclude no vertices. Otherwise, you can supply
symbols or tidyselect helpers like any_of() and starts_with().

outdated Logical, whether to show colors to distinguish outdated targets from up-to-date
targets. (Global functions and objects still show these colors.) Looking for
outdated targets takes a lot of time for large pipelines with lots of branches, and
setting outdated to FALSE is a nice way to speed up the graph if you only want
to see dependency relationships and pipeline progress.

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets are checked. Choices:

• "silent": print nothing.
• "forecast": print running totals of the checked and outdated targets found

so far.
seconds_reporter

Positive numeric of length 1 with the minimum number of seconds between
times when the reporter prints progress messages to the R console.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

102 tar_network

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A list with two data frames: vertices and edges. The vertices data frame has one row per target
and columns with the the type of the target or object (stem, branch, map, cross, function, or object),
each target’s description, and each target’s status (up to date, outdated, dispatched, completed,
canceled, or errored), as well as metadata if available (seconds of runtime, bytes of storage, and
number of dynamic branches). The edges data frame has one row for every edge and columns to
and from to mark the starting and terminating vertices.

Dependency graph

The dependency graph of a pipeline is a directed acyclic graph (DAG) where each node indicates
a target or global object and each directed edge indicates where a downstream node depends on
an upstream node. The DAG is not always a tree, but it never contains a cycle because no target
is allowed to directly or indirectly depend on itself. The dependency graph should show a natural
progression of work from left to right. targets uses static code analysis to create the graph, so
the order of tar_target() calls in the _targets.R file does not matter. However, targets does
not support self-referential loops or other cycles. For more information on the dependency graph,
please read https://books.ropensci.org/targets/targets.html#dependencies.

See Also

Other inspect: tar_deps(), tar_manifest(), tar_outdated(), tar_sitrep(), tar_validate()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set()
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1, description = "y2 info"),
tar_target(z, y1 + y2, description = "z info")

)
}, ask = FALSE)
tar_network(targets_only = TRUE)
})
}

https://books.ropensci.org/targets/targets.html#dependencies

tar_newer 103

tar_newer List new targets

Description

List all the targets whose last successful run occurred after a certain point in time.

Usage

tar_newer(
time,
names = NULL,
inclusive = FALSE,
store = targets::tar_config_get("store")

)

Arguments

time A POSIXct object of length 1, time threshold. Targets newer than this time stamp
are returned. For example, if time = Sys.time - as.difftime(1, units = "weeks")
then tar_newer() returns targets newer than one week ago.

names Names of eligible targets. Targets excluded from names will not be returned
even if they are newer than the given time. The object supplied to names should
be NULL or a tidyselect expression like any_of() or starts_with() from
tidyselect itself, or tar_described_as() to select target names based on
their descriptions.

inclusive Logical of length 1, whether to include targets completed at exactly the time
given.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

Only applies to targets with recorded time stamps: just non-branching targets and individual dy-
namic branches. As of targets version 0.6.0, these time stamps are available for these targets
regardless of storage format. Earlier versions of targets do not record time stamps for remote
storage such as format = "url" or repository = "aws" in tar_target().

Value

A character vector of names of old targets with recorded timestamp metadata.

104 tar_noninteractive

See Also

Other time: tar_older(), tar_timestamp()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(tar_target(x, seq_len(2)))

}, ask = FALSE)
tar_make()
targets newer than 1 week ago
tar_newer(Sys.time() - as.difftime(1, units = "weeks"))
targets newer than 1 week from now
tar_newer(Sys.time() + as.difftime(1, units = "weeks"))
Everything is still up to date.
tar_make()
Invalidate all targets targets newer than 1 week ago
so they run on the next tar_make().
invalidate_these <- tar_newer(Sys.time() - as.difftime(1, units = "weeks"))
tar_invalidate(any_of(invalidate_these))
tar_make()
})
}

tar_noninteractive Run if Target Markdown interactive mode is not on.

Description

In Target Markdown, run the enclosed code only if interactive mode is not activated. Otherwise, do
not run the code.

Usage

tar_noninteractive(code)

Arguments

code R code to run if Target Markdown interactive mode is not turned on.

Details

Visit <books.ropensci.org/targets/literate-programming.html> to learn about Target Markdown and
interactive mode.

tar_objects 105

Value

If Target Markdown interactive mode is not turned on, the function returns the result of running the
code. Otherwise, the function invisibly returns NULL.

See Also

Other Target Markdown: tar_engine_knitr(), tar_interactive(), tar_toggle()

Examples

tar_noninteractive(message("Not in interactive mode."))

tar_objects List saved targets

Description

List targets currently saved to _targets/objects/ or the cloud. Does not include local files with
tar_target(..., format = "file", repository = "local").

Usage

tar_objects(
names = NULL,
cloud = TRUE,
store = targets::tar_config_get("store")

)

Arguments

names Names of targets to select. The object supplied to names should be NULL or a
tidyselect expression like any_of() or starts_with() from tidyselect it-
self, or tar_described_as() to select target names based on their descriptions.

cloud Logical of length 1, whether to include cloud targets in the output (e.g. tar_target(...,
repository = "aws")).

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

Character vector of targets saved to _targets/objects/.

106 tar_older

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other storage: tar_format(), tar_load(), tar_load_everything(), tar_read()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(tar_target(x, "value"))

}, ask = FALSE)
tar_make()
tar_objects()
tar_objects(starts_with("x")) # see also any_of()
})
}

tar_older List old targets

Description

List all the targets whose last successful run occurred before a certain point in time. Combine with
tar_invalidate(), you can use tar_older() to automatically rerun targets at regular intervals.
See the examples for a demonstration.

Usage

tar_older(
time,
names = NULL,
inclusive = FALSE,
store = targets::tar_config_get("store")

)

tar_older 107

Arguments

time A POSIXct object of length 1, time threshold. Targets older than this time stamp
are returned. For example, if time = Sys.time() - as.difftime(1, units =
"weeks") then tar_older() returns targets older than one week ago.

names Names of eligible targets. Targets excluded from names will not be returned even
if they are old. The object supplied to names should be NULL or a tidyselect
expression like any_of() or starts_with() from tidyselect itself, or tar_described_as()
to select target names based on their descriptions.

inclusive Logical of length 1, whether to include targets completed at exactly the time
given.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

Only applies to targets with recorded time stamps: just non-branching targets and individual dy-
namic branches. As of targets version 0.6.0, these time stamps are available for these targets
regardless of storage format. Earlier versions of targets do not record time stamps for remote
storage such as format = "url" or repository = "aws" in tar_target().

Value

A character vector of names of old targets with recorded timestamp metadata.

See Also

Other time: tar_newer(), tar_timestamp()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(tar_target(x, seq_len(2)))

}, ask = FALSE)
tar_make()
targets older than 1 week ago
tar_older(Sys.time() - as.difftime(1, units = "weeks"))
targets older than 1 week from now
tar_older(Sys.time() + as.difftime(1, units = "weeks"))
Everything is still up to date.
tar_make()
Invalidate all targets targets older than 1 week from now
so they run on the next tar_make().

108 tar_option_get

invalidate_these <- tar_older(Sys.time() + as.difftime(1, units = "weeks"))
tar_invalidate(any_of(invalidate_these))
tar_make()
})
}

tar_option_get Get a target option.

Description

Get a target option. These options include default arguments to tar_target() such as packages,
storage format, iteration type, and cue. Needs to be called before any calls to tar_target() in
order to take effect.

Usage

tar_option_get(name = NULL, option = NULL)

Arguments

name Character of length 1, name of an option to get. Must be one of the argument
names of tar_option_set().

option Deprecated, use the name argument instead.

Details

This function goes well with tar_target_raw() when it comes to defining external interfaces on
top of the targets package to create pipelines.

Value

Value of a target option.

See Also

Other configuration: tar_config_get(), tar_config_projects(), tar_config_set(), tar_config_unset(),
tar_config_yaml(), tar_envvars(), tar_option_reset(), tar_option_set()

Examples

tar_option_get("format") # default format before we set anything
tar_target(x, 1)$settings$format
tar_option_set(format = "fst_tbl") # new default format
tar_option_get("format")
tar_target(x, 1)$settings$format
tar_option_reset() # reset the format
tar_target(x, 1)$settings$format
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN

tar_option_reset 109

tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set(cue = tar_cue(mode = "always")) # All targets always run.
list(tar_target(x, 1), tar_target(y, 2))

})
tar_make()
tar_make()
})
}

tar_option_reset Reset all target options.

Description

Reset all target options you previously chose with tar_option_set(). These options are mostly
configurable default arguments to tar_target() and tar_target_raw().

Usage

tar_option_reset()

Value

NULL (invisibly).

See Also

Other configuration: tar_config_get(), tar_config_projects(), tar_config_set(), tar_config_unset(),
tar_config_yaml(), tar_envvars(), tar_option_get(), tar_option_set()

Examples

tar_option_get("format") # default format before we set anything
tar_target(x, 1)$settings$format
tar_option_set(format = "fst_tbl") # new default format
tar_option_get("format")
tar_target(x, 1)$settings$format
tar_option_reset() # reset all options
tar_target(x, 1)$settings$format
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set(cue = tar_cue(mode = "always"))
tar_option_reset() # Undo option above.
list(tar_target(x, 1), tar_target(y, 2))

110 tar_option_set

})
tar_make()
tar_make()
})
}

tar_option_set Set target options.

Description

Set target options, including default arguments to tar_target() such as packages, storage format,
iteration type, and cue. Only the non-null arguments are actually set as options. See currently set
options with tar_option_get(). To use tar_option_set() effectively, put it in your workflow’s
target script file (default: _targets.R) before calls to tar_target() or tar_target_raw().

Usage

tar_option_set(
tidy_eval = NULL,
packages = NULL,
imports = NULL,
library = NULL,
envir = NULL,
format = NULL,
repository = NULL,
repository_meta = NULL,
iteration = NULL,
error = NULL,
memory = NULL,
garbage_collection = NULL,
deployment = NULL,
priority = NULL,
backoff = NULL,
resources = NULL,
storage = NULL,
retrieval = NULL,
cue = NULL,
description = NULL,
debug = NULL,
workspaces = NULL,
workspace_on_error = NULL,
seed = NULL,
controller = NULL,
trust_timestamps = NULL,
trust_object_timestamps = NULL

)

tar_option_set 111

Arguments

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

imports Character vector of package names. For every package listed, targets tracks
every dataset and every object in the package namespace as if it were part of the
global namespace. As an example, say you have a package called customAnalysisPackage
which contains an object called analysis_function(). If you write tar_option_set(imports
= "yourAnalysisPackage") in your target script file (default: _targets.R),
then a function called "analysis_function" will show up in the tar_visnetwork()
graph, and any targets or functions referring to the symbol "analysis_function"
will depend on the function analysis_function() from package yourAnalysisPackage.
This is best combined with tar_option_set(packages = "yourAnalysisPackage")
so that analysis_function() can actually be called in your code.
There are several important limitations: 1. Namespaced calls, e.g. yourAnalysisPackage::analysis_function(),
are ignored because of the limitations in codetools::findGlobals() which
powers the static code analysis capabilities of targets. 2. The imports op-
tion only looks at R objects and R code. It not account for low-level com-
piled code such as C/C++ or Fortran. 3. If you supply multiple packages,
e.g. tar_option_set(imports = c("p1", "p2")), then the objects in p1 over-
ride the objects in p2 if there are name conflicts. 4. Similarly, objects in
tar_option_get("envir") override everything in tar_option_get("imports").

library Character vector of library paths to try when loading packages.

envir Environment containing functions and global objects common to all targets in
the pipeline. The envir argument of tar_make() and related functions always
overrides the current value of tar_option_get("envir") in the current R ses-
sion just before running the target script file, so whenever you need to set an al-
ternative envir, you should always set it with tar_option_set() from within
the target script file. In other words, if you call tar_option_set(envir =
envir1) in an interactive session and then tar_make(envir = envir2, callr_function
= NULL), then envir2 will be used.
If envir is the global environment, all the promise objects are diffused before
sending the data to parallel workers in tar_make_future() and tar_make_clustermq(),
but otherwise the environment is unmodified. This behavior improves perfor-
mance by decreasing the size of data sent to workers.
If envir is not the global environment, then it should at least inherit from
the global environment or base environment so targets can access attached
packages. In the case of a non-global envir, targets attempts to remove
potentially high memory objects that come directly from targets. That in-
cludes tar_target() objects of class "tar_target", as well as objects of class
"tar_pipeline" or "tar_algorithm". This behavior improves performance
by decreasing the size of data sent to workers.
Package environments should not be assigned to envir. To include package

112 tar_option_set

objects as upstream dependencies in the pipeline, assign the package to the
packages and imports arguments of tar_option_set().

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

• A character string from tar_repository_cas() for content-addressable
storage.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

repository_meta

Character of length 1 with the same values as repository but excluding content-
addressable storage ("aws", "gcp", "local"). Cloud repository for the meta-
data text files in _targets/meta/, including target metadata and progress data.
Defaults to tar_option_get("repository") except in the case of content-
addressable storage (CAS). When tar_option_get("repository") is a CAS
repository, the default value of repository_meta is "local".

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a non-dynamic data frame. For iteration = "group", the target must not
by dynamic (the pattern argument of tar_target() must be left NULL).
The target’s return value must be a data frame with a special tar_group
column of consecutive integers from 1 through the number of groups. Each
integer designates a group, and a branch is created for each collection of
rows in a group. See the tar_group() function to see how you can create
the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_option_set 113

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline. In addition, as of version 1.8.0.9011, a value of NULL is given to
upstream dependencies with error = "null" if loading fails.

• "abridge": any currently running targets keep running, but no new targets
launch after that.

• "trim": all currently running targets stay running. A queued target is al-
lowed to start if:
1. It is not downstream of the error, and
2. It is not a sibling branch from the same tar_target() call (if the error

happened in a dynamic branch).
The idea is to avoid starting any new work that the immediate error impacts.
error = "trim" is just like error = "abridge", but it allows potentially
healthy regions of the dependency graph to begin running. (Visit https://
books.ropensci.org/targets/debugging.html to learn how to debug
targets using saved workspaces.)

memory Character of length 1, memory strategy. Possible values:

• "auto": new in targets version 1.8.0.9011, memory = "auto" is equiva-
lent to memory = "transient" for dynamic branching (a non-null pattern
argument) and memory = "persistent" for targets that do not use dynamic
branching.

• "persistent": the target stays in memory until the end of the pipeline
(unless storage is "worker", in which case targets unloads the value
from memory right after storing it in order to avoid sending copious data
over a network).

• "transient": the target gets unloaded after every new target completes.
Either way, the target gets automatically loaded into memory whenever an-
other target needs the value.

For cloud-based dynamic files (e.g. format = "file" with repository = "aws"),
the memory option applies to the temporary local copy of the file: "persistent"
means it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

A non-negative integer. If 0, do not run garbage collection. If 1, run garbage
collection on every target that is not skipped, both locally and on all parallel
workers. If garbage_collection is a positive integer n, then garbage collection
runs every n’th target that is not skipped. For example, garbage_collection =
3 will run garbage collection on every third active target, both locally and on all
parallel workers.

deployment Character of length 1. If deployment is "main", then the target will run on the
central controlling R process. Otherwise, if deployment is "worker" and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

114 tar_option_set

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

backoff An object from tar_backoff() configuring the exponential backoff algorithm
of the pipeline. See tar_backoff() for details. A numeric argument for backoff
is still allowed, but deprecated.

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character string to control when the output of the target is saved to storage.
Only relevant when using targets with parallel workers (https://books.
ropensci.org/targets/crew.html). Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": targets makes no attempt to save the result of the target to storage

in the location where targets expects it to be. Saving to storage is the
responsibility of the user. Use with caution.

retrieval Character string to control when the current target loads its dependencies into
memory before running. (Here, a "dependency" is another target upstream that
the current one depends on.) Only relevant when using targets with parallel
workers (https://books.ropensci.org/targets/crew.html). Must be one
of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

• "worker": the worker loads the target’s dependencies.
• "none": targets makes no attempt to load its dependencies. With retrieval
= "none", loading dependencies is the responsibility of the user. Use with
caution.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make(). For example, tar_manifest(names =
tar_described_as(starts_with("survival model"))) lists all the targets
whose descriptions start with the character string "survival model".

debug Character vector of names of targets to run in debug mode. To use effectively,
you must set callr_function = NULL and restart your R session just before run-
ning. You should also tar_make(), tar_make_clustermq(), or tar_make_future().
For any target mentioned in debug, targets will force the target to run locally
(with tar_cue(mode = "always") and deployment = "main" in the settings)
and pause in an interactive debugger to help you diagnose problems. This is like
inserting a browser() statement at the beginning of the target’s expression, but
without invalidating any targets.

https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html

tar_option_set 115

workspaces Character vector of target names. Could be non-branching targets, whole dy-
namic branching targets, or individual branch names. tar_make() and friends
will save workspace files for these targets even if the targets are skipped. Workspace
files help with debugging. See tar_workspace() for details about workspaces.

workspace_on_error

Logical of length 1, whether to save a workspace file for each target that throws
an error. Workspace files help with debugging. See tar_workspace() for de-
tails about workspaces.

seed Integer of length 1, seed for generating target-specific pseudo-random number
generator seeds. These target-specific seeds are deterministic and depend on
tar_option_get("seed") and the target name. Target-specific seeds are safely
and reproducibly applied to each target’s command, and they are stored in the
metadata and retrievable with tar_meta() or tar_seed().
Either the user or third-party packages built on top of targets may still set
seeds inside the command of a target. For example, some target factories in
the tarchetypes package assigns replicate-specific seeds for the purposes of
reproducible within-target batched replication. In cases like these, the effect of
the target-specific seed saved in the metadata becomes irrelevant and the seed
defined in the command applies.
The seed option can also be NA to disable automatic seed-setting. Any targets
defined while tar_option_get("seed") is NA will not set a seed. In this case,
those targets will never be up to date unless they have cue = tar_cue(seed =
FALSE).

controller A controller or controller group object produced by the crew R package. crew
brings auto-scaled distributed computing to tar_make().

trust_timestamps

Logical of length 1, whether to use file system modification timestamps to check
whether the target output data files in are up to date. This is an advanced set-
ting and usually does not need to be set by the user except on old or difficult
platforms.
If trust_timestamps was reset with tar_option_reset() or never set at all
(recommended) then targets makes a decision based on the type of file system
of the given file.
If trust_timestamps is TRUE (default), then targets looks at the timestamp
first. If it agrees with the timestamp recorded in the metadata, then targets
considers the file unchanged. If the timestamps disagree, then targets recom-
putes the hash to make a final determination. This practice reduces the number
of hash computations and thus saves time.
However, timestamp precision varies from a few nanoseconds at best to 2 en-
tire seconds at worst, and timestamps with poor precision should not be fully
trusted if there is any possibility that you will manually change the file within
2 seconds after the pipeline finishes. If the data store is on a file system with
low-precision timestamps, then you may consider setting trust_timestamps
to FALSE so targets errs on the safe side and always recomputes the hashes of
files.
To check if your file system has low-precision timestamps, you can run file.create("x"); nanonext::msleep(1); file.create("y");
from within the directory containing the _targets data store and then check

116 tar_option_set

difftime(file.mtime("y"), file.mtime("x"), units = "secs"). If the value
from difftime() is around 0.001 seconds (must be strictly above 0 and below
1) then you do not need to set trust_timestamps = FALSE.

trust_object_timestamps

Deprecated. Use trust_timestamps instead.

Value

NULL (invisibly).

Storage formats

targets has several built-in storage formats to control how return values are saved and loaded from
disk:

• "rds": Default, uses saveRDS() and readRDS(). Should work for most objects, but slow.

• "auto": either "file" or "qs", depending on the return value of the target. If the return value
is a character vector of existing files (and/or directories), then the format becomes "file"
before tar_make() saves the target. Otherwise, the format becomes "qs".

• "qs": Uses qs2::qs_save() and qs2::qs_read(). Should work for most objects, much
faster than "rds". Optionally configure settings through tar_resources() and tar_resources_qs().
Prior to targets version 1.8.0.9014, format = "qs" used the qs package. qs has since been
superseded in favor of qs2, and so later versions of targets use qs2 to save new data. To
read existing data, targets first attempts qs2::qs_read(), and then if that fails, it falls back
on qs::qread().

• "feather": Uses arrow::write_feather() and arrow::read_feather() (version 2.0).
Much faster than "rds", but the value must be a data frame. Optionally set compression and
compression_level in arrow::write_feather() through tar_resources() and tar_resources_feather().
Requires the arrow package (not installed by default).

• "parquet": Uses arrow::write_parquet() and arrow::read_parquet() (version 2.0).
Much faster than "rds", but the value must be a data frame. Optionally set compression and
compression_level in arrow::write_parquet() through tar_resources() and tar_resources_parquet().
Requires the arrow package (not installed by default).

• "fst": Uses fst::write_fst() and fst::read_fst(). Much faster than "rds", but the
value must be a data frame. Optionally set the compression level for fst::write_fst()
through tar_resources() and tar_resources_fst(). Requires the fst package (not in-
stalled by default).

• "fst_dt": Same as "fst", but the value is a data.table. Deep copies are made as appro-
priate in order to protect against the global effects of in-place modification. Optionally set the
compression level the same way as for "fst".

• "fst_tbl": Same as "fst", but the value is a tibble. Optionally set the compression level
the same way as for "fst".

• "keras": superseded by tar_format() and incompatible with error = "null" (in tar_target()
or tar_option_set()). Uses keras::save_model_hdf5() and keras::load_model_hdf5().
The value must be a Keras model. Requires the keras package (not installed by default).

tar_option_set 117

• "torch": superseded by tar_format() and incompatible with error = "null" (in tar_target()
or tar_option_set()). Uses torch::torch_save() and torch::torch_load(). The value
must be an object from the torch package such as a tensor or neural network module. Re-
quires the torch package (not installed by default).

• "file": A dynamic file. To use this format, the target needs to manually identify or save
some data and return a character vector of paths to the data (must be a single file path if
repository is not "local"). (These paths must be existing files and nonempty directories.)
Then, targets automatically checks those files and cues the appropriate run/skip decisions if
those files are out of date. Those paths must point to files or directories, and they must not
contain characters | or *. All the files and directories you return must actually exist, or else
targets will throw an error. (And if storage is "worker", targets will first stall out trying
to wait for the file to arrive over a network file system.) If the target does not create any files,
the return value should be character(0).
If repository is not "local" and format is "file", then the character vector returned by
the target must be of length 1 and point to a single file. (Directories and vectors of multiple
file paths are not supported for dynamic files on the cloud.) That output file is uploaded to the
cloud and tracked for changes where it exists in the cloud. The local file is deleted after the
target runs.

• "url": A dynamic input URL. For this storage format, repository is implicitly "local",
URL format is like format = "file" except the return value of the target is a URL that already
exists and serves as input data for downstream targets. Optionally supply a custom curl
handle through tar_resources() and tar_resources_url(). in new_handle(), nobody
= TRUE is important because it ensures targets just downloads the metadata instead of the
entire data file when it checks time stamps and hashes. The data file at the URL needs to have
an ETag or a Last-Modified time stamp, or else the target will throw an error because it cannot
track the data. Also, use extreme caution when trying to use format = "url" to track uploads.
You must be absolutely certain the ETag and Last-Modified time stamp are fully updated and
available by the time the target’s command finishes running. targets makes no attempt to
wait for the web server.

• A custom format can be supplied with tar_format(). For this choice, it is the user’s respon-
sibility to provide methods for (un)serialization and (un)marshaling the return value of the
target.

• The formats starting with "aws_" are deprecated as of 2022-03-13 (targets version > 0.10.0).
For cloud storage integration, use the repository argument instead.

Formats "rds", "file", and "url" are general-purpose formats that belong in the targets package
itself. Going forward, any additional formats should be implemented with tar_format() in third-
party packages like tarchetypes and geotargets (for example: tarchetypes::tar_format_nanoparquet()).
Formats "qs", "fst", etc. are legacy formats from before the existence of tar_format(), and they
will continue to remain in targets without deprecation.

See Also

Other configuration: tar_config_get(), tar_config_projects(), tar_config_set(), tar_config_unset(),
tar_config_yaml(), tar_envvars(), tar_option_get(), tar_option_reset()

Examples

tar_option_get("format") # default format before we set anything

118 tar_outdated

tar_target(x, 1)$settings$format
tar_option_set(format = "fst_tbl") # new default format
tar_option_get("format")
tar_target(x, 1)$settings$format
tar_option_reset() # reset the format
tar_target(x, 1)$settings$format
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set(cue = tar_cue(mode = "always")) # All targets always run.
list(tar_target(x, 1), tar_target(y, 2))

})
tar_make()
tar_make()
})
}

tar_outdated Check which targets are outdated.

Description

Checks for outdated targets in the pipeline, targets that will be rerun automatically if you call
tar_make() or similar. See tar_cue() for the rules that decide whether a target needs to rerun.

Usage

tar_outdated(
names = NULL,
shortcut = targets::tar_config_get("shortcut"),
branches = FALSE,
targets_only = TRUE,
reporter = targets::tar_config_get("reporter_outdated"),
seconds_reporter = targets::tar_config_get("seconds_reporter"),
seconds_interval = targets::tar_config_get("seconds_interval"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function, reporter),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

names Names of the targets. tar_outdated() will check these targets and all up-
stream ancestors in the dependency graph. Set names to NULL to check/build
all the targets (default). The object supplied to names should be NULL or a

tar_outdated 119

tidyselect expression like any_of() or starts_with() from tidyselect it-
self, or tar_described_as() to select target names based on their descriptions.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as
the dependency graph goes. If TRUE, then the function only checks the targets in
names and uses stored metadata for information about upstream dependencies as
needed. shortcut = TRUE increases speed if there are a lot of up-to-date targets,
but it assumes all the dependencies are up to date, so please use with caution.
Also, shortcut = TRUE only works if you set names.

branches Logical of length 1, whether to include branch names. Including branches could
get cumbersome for large pipelines. Individual branch names are still omitted
when branch-specific information is not reliable: for example, when a pattern
branches over an outdated target.

targets_only Logical of length 1, whether to just restrict to targets or to include functions and
other global objects from the environment created by running the target script
file (default: _targets.R).

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets are checked. Choices:

• "silent": print nothing.
• "forecast": print running totals of the checked and outdated targets found

so far.
seconds_reporter

Positive numeric of length 1 with the minimum number of seconds between
times when the reporter prints progress messages to the R console.

seconds_interval

Deprecated on 2023-08-24 (version 1.2.2.9001). Use seconds_meta_append,
seconds_meta_upload, and seconds_reporter instead.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

120 tar_outdated

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

Requires that you define a pipeline with a target script file (default: _targets.R). (See tar_script()
for details.)

Value

Names of the outdated targets.

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other inspect: tar_deps(), tar_manifest(), tar_network(), tar_sitrep(), tar_validate()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script(list(tar_target(x, 1 + 1)))
tar_outdated()
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_outdated()
})
}

tar_path_script 121

tar_path_script Current target script path

Description

Identify the file path to the target script of the pipeline currently running.

Usage

tar_path_script()

Value

Character, file path to the target script of the pipeline currently running. If called outside of the
pipeline currently running, tar_path_script() returns tar_config_get("script").

See Also

Other utilities: tar_active(), tar_backoff(), tar_call(), tar_cancel(), tar_definition(),
tar_described_as(), tar_envir(), tar_format_get(), tar_group(), tar_name(), tar_path(),
tar_path_script_support(), tar_path_store(), tar_path_target(), tar_source(), tar_store(),
tar_unblock_process()

Examples

tar_path_script()
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
script <- tempfile()
tar_script(tar_target(x, tar_path_script()), script = script, ask = FALSE)
tar_make(script = script)
tar_read(x)
})
}

tar_path_script_support

Directory path to the support scripts of the current target script

Description

Identify the directory path to the support scripts of the current target script of the pipeline currently
running.

Usage

tar_path_script_support()

122 tar_path_store

Details

A target script (default: _targets.R) comes with support scripts if it is written by Target Mark-
down. These support scripts usually live in a folder called _targets_r/, but the path may vary
from case to case. The tar_path_scipt_support() returns the path to the folder with the support
scripts.

Value

Character, directory path to the target script of the pipeline currently running. If called outside of
the pipeline currently running, tar_path_script() returns tar_config_get("script").

See Also

Other utilities: tar_active(), tar_backoff(), tar_call(), tar_cancel(), tar_definition(),
tar_described_as(), tar_envir(), tar_format_get(), tar_group(), tar_name(), tar_path(),
tar_path_script(), tar_path_store(), tar_path_target(), tar_source(), tar_store(),
tar_unblock_process()

Examples

tar_path_script_support()
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
script <- tempfile()
tar_script(

tar_target(x, tar_path_script_support()),
script = script,
ask = FALSE

)
tar_make(script = script)
tar_read(x)
})
}

tar_path_store Current data store path

Description

Identify the file path to the data store of the pipeline currently running.

Usage

tar_path_store()

Value

Character, file path to the data store of the pipeline currently running. If called outside of the
pipeline currently running, tar_path_store() returns tar_config_get("store").

tar_path_target 123

See Also

Other utilities: tar_active(), tar_backoff(), tar_call(), tar_cancel(), tar_definition(),
tar_described_as(), tar_envir(), tar_format_get(), tar_group(), tar_name(), tar_path(),
tar_path_script(), tar_path_script_support(), tar_path_target(), tar_source(), tar_store(),
tar_unblock_process()

Examples

tar_path_store()
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script(tar_target(x, tar_path_store()), ask = FALSE)
store <- tempfile()
tar_make(store = store)
tar_read(x, store = store)
})
}

tar_path_target Identify the file path where a target will be stored.

Description

Identify the file path where a target will be stored after the target finishes running in the pipeline.

Usage

tar_path_target(
name = NULL,
default = NA_character_,
create_dir = FALSE,
store = targets::tar_config_get("store")

)

Arguments

name Symbol, name of a target. If NULL, tar_path_target() returns the path of the
target currently running in a pipeline.

default Character, value to return if tar_path_target() is called on its own outside a
targets pipeline. Having a default lets users run things without tar_make(),
which helps peel back layers of code and troubleshoot bugs.

create_dir Logical of length 1, whether to create dirname(tar_path_target()) in tar_path_target()
itself. This is useful if you are writing to tar_path_target() from inside a
storage = "none" target and need the parent directory of the file to exist.

store Character of length 1, path to the data store if tar_path_target() is called
outside a running pipeline. If tar_path_target() is called inside a running
pipeline, this argument is ignored and actual the path to the running pipeline’s
data store is used instead.

124 tar_pattern

Value

Character, file path of the return value of the target. If not called from inside a running target,
tar_path_target(name = your_target) just returns _targets/objects/your_target, the file
path where your_target will be saved unless format is equal to "file" or any of the supported
cloud-based storage formats.

For non-cloud storage formats, if you call tar_path_target() with no arguments while target x
is running, the name argument defaults to the name of the running target, so tar_path_target()
returns _targets/objects/x.

For cloud-backed formats, tar_path_target() returns the path to the staging file in _targets/scratch/.
That way, even if you select a cloud repository (e.g. tar_target(..., repository = "aws",
storage = "none")) then you can still manually write to tar_path_target(create_dir = TRUE)
and the targets package will automatically hash it and upload it to the AWS S3 bucket. This does
not apply to format = "file", where you would never need storage = "none" anyway.

See Also

Other utilities: tar_active(), tar_backoff(), tar_call(), tar_cancel(), tar_definition(),
tar_described_as(), tar_envir(), tar_format_get(), tar_group(), tar_name(), tar_path(),
tar_path_script(), tar_path_script_support(), tar_path_store(), tar_source(), tar_store(),
tar_unblock_process()

Examples

tar_path_target()
tar_path_target(your_target)
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script(tar_target(returns_path, tar_path_target()), ask = FALSE)
tar_make()
tar_read(returns_path)
})
}

tar_pattern Emulate dynamic branching.

Description

Emulate the dynamic branching process outside a pipeline. tar_pattern() can help you under-
stand the overall branching structure that comes from the pattern argument of tar_target().

Usage

tar_pattern(pattern, ..., seed = 0L)

tar_pattern 125

Arguments

pattern Function call with the pattern specification.

... Named integers, each of length 1. Each name is the name of a dependency
target, and each integer is the length of the target (number of branches or slices).
Names must be unique.

seed Integer of length 1, random number generator seed to emulate the pattern re-
producibly. (The sample() pattern is random). In a real pipeline, the seed is
automatically generated from the target name in deterministic fashion.

Details

Dynamic branching is a way to programmatically create multiple new targets based on the values
of other targets, all while the pipeline is running. Use the pattern argument of tar_target() to
get started. pattern accepts a function call composed of target names and any of the following
patterns:

• map(): iterate over one or more targets in sequence.

• cross(): iterate over combinations of slices of targets.

• slice(): select one or more slices by index, e.g. slice(x, index = c(3, 4)) selects the
third and fourth slice or branch of x.

• head(): restrict branching to the first few elements.

• tail(): restrict branching to the last few elements.

• sample(): restrict branching to a random subset of elements.

Value

A tibble showing the kinds of dynamic branches that tar_target() would create in a real pipeline
with the given pattern. Each row is a dynamic branch, each column is a dependency target, and
each element is the name of an upstream bud or branch that the downstream branch depends on.
Buds are pieces of non-branching targets ("stems") and branches are pieces of patterns. The returned
bud and branch names are not the actual ones you will see when you run the pipeline, but they do
communicate the branching structure of the pattern.

See Also

Other branching: tar_branch_index(), tar_branch_names(), tar_branches()

Examples

To use dynamic map for real in a pipeline,
call map() in a target's pattern.
The following code goes at the bottom of
your target script file (default: `_targets.R`).
list(

tar_target(x, seq_len(2)),
tar_target(y, head(letters, 2)),
tar_target(dynamic, c(x, y), pattern = map(x, y)) # 2 branches

)

126 tar_pid

Likewise for more complicated patterns.
list(

tar_target(x, seq_len(2)),
tar_target(y, head(letters, 2)),
tar_target(z, head(LETTERS, 2)),
tar_target(dynamic, c(x, y, z), pattern = cross(z, map(x, y))) #4 branches

)
But you can emulate dynamic branching without running a pipeline
in order to understand the patterns you are creating. Simply supply
the pattern and the length of each dependency target.
The returned data frame represents the branching structure of the pattern:
One row per new branch, one column per dependency target, and
one element per bud/branch in each dependency target.
tar_pattern(

cross(x, map(y, z)),
x = 2,
y = 3,
z = 3

)
tar_pattern(

head(cross(x, map(y, z)), n = 2),
x = 2,
y = 3,
z = 3

)

tar_pid Get main process ID.

Description

Get the process ID (PID) of the most recent main R process to orchestrate the targets of the current
project.

Usage

tar_pid(store = targets::tar_config_get("store"))

Arguments

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

tar_poll 127

Details

The main process is the R process invoked by tar_make() or similar. If callr_function is not
NULL, this is an external process, and the pid in the return value will not agree with Sys.getpid()
in your current interactive session. The process may or may not be alive. You may want to check it
with ps::ps_is_running(ps::ps_handle(targets::tar_pid())) before running another call
to tar_make() for the same project.

Value

Integer with the process ID (PID) of the most recent main R process to orchestrate the targets of the
current project.

See Also

Other data: tar_crew(), tar_process()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
Sys.getpid()
tar_pid() # Different from the current PID.
})
}

tar_poll Repeatedly poll progress in the R console.

Description

Print the information in tar_progress_summary() at regular intervals.

Usage

tar_poll(
interval = 1,
timeout = Inf,
fields = c("skipped", "dispatched", "completed", "errored", "canceled", "since"),
store = targets::tar_config_get("store")

)

128 tar_process

Arguments

interval Number of seconds to wait between iterations of polling progress.

timeout How many seconds to run before exiting.

fields Optional character vector of names of progress data columns to read. Set to
NULL to read all fields.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

NULL (invisibly). Called for its side effects.

See Also

Other progress: tar_canceled(), tar_completed(), tar_dispatched(), tar_errored(), tar_progress(),
tar_progress_branches(), tar_progress_summary(), tar_skipped(), tar_watch(), tar_watch_server(),
tar_watch_ui()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

list(
tar_target(x, seq_len(100)),
tar_target(y, Sys.sleep(0.1), pattern = map(x))

)
}, ask = FALSE)
px <- tar_make(callr_function = callr::r_bg, reporter = "silent")
tar_poll()
})
}

tar_process Get main process info.

Description

Get info on the most recent main R process to orchestrate the targets of the current project.

Usage

tar_process(names = NULL, store = targets::tar_config_get("store"))

tar_process 129

Arguments

names Optional, names of the data points to return. If supplied, tar_process() returns
only the rows of the names you select. The object supplied to names should be
NULL or a tidyselect expression like any_of() or starts_with().

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

The main process is the R process invoked by tar_make() or similar. If callr_function is not
NULL, this is an external process, and the pid in the return value will not agree with Sys.getpid()
in your current interactive session. The process may or may not be alive. You may want to check
the status with tar_pid() %in% ps::ps_pids() before running another call to tar_make() for the
same project.

Value

A data frame with metadata on the most recent main R process to orchestrate the targets of the
current project. The output includes the pid of the main process.

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other data: tar_crew(), tar_pid()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(

tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_process()

130 tar_progress

tar_process(pid)
})
}

tar_progress Read progress.

Description

Read a project’s target progress data for the most recent run of tar_make() or similar. Only the
most recent record is shown.

Usage

tar_progress(
names = NULL,
fields = "progress",
store = targets::tar_config_get("store")

)

Arguments

names Optional, names of the targets. If supplied, the output is restricted to the selected
targets. The object supplied to names should be NULL or a tidyselect expres-
sion like any_of() or starts_with() from tidyselect itself, or tar_described_as()
to select target names based on their descriptions.

fields Optional, names of progress data columns to read. Set to NULL to read all fields.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A data frame with one row per target and the following columns:

• name: name of the target.

• type: type of target: "stem" for non-branching targets, "pattern" for dynamically branching
targets, and "branch" for dynamic branches.

• parent: name of the target’s parent. For branches, this is the name of the associated pattern.
For other targets, the pattern is just itself.

• branches: number of dynamic branches of a pattern. 0 for non-patterns.

• progress: the most recent progress update of that target. Could be "dispatched", "completed",
"skipped", "canceled", or "errored". "dispatched" means the target was sent off to be
run, but in the case of tar_make() with a crew controller, the target might not actually start
running right away if the crew workers are all busy.

tar_progress_branches 131

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other progress: tar_canceled(), tar_completed(), tar_dispatched(), tar_errored(), tar_poll(),
tar_progress_branches(), tar_progress_summary(), tar_skipped(), tar_watch(), tar_watch_server(),
tar_watch_ui()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_progress()
tar_progress(starts_with("y_")) # see also any_of()
})
}

tar_progress_branches Tabulate the progress of dynamic branches.

Description

Read a project’s target progress data for the most recent run of the pipeline and display the tabulated
status of dynamic branches. Only the most recent record is shown.

Usage

tar_progress_branches(
names = NULL,
fields = NULL,
store = targets::tar_config_get("store")

)

132 tar_progress_branches

Arguments

names Optional, names of the targets. If supplied, tar_progress() only returns progress
information on these targets. The object supplied to names should be NULL or a
tidyselect expression like any_of() or starts_with() from tidyselect it-
self, or tar_described_as() to select target names based on their descriptions.

fields Optional, names of progress data columns to read. Set to NULL to read all fields.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A data frame with one row per target per progress status and the following columns.

• name: name of the pattern.

• progress: progress status: "dispatched", "completed", "canceled", or "errored".

• branches: number of branches in the progress category.

• total: total number of branches planned for the whole pattern. Values within the same pattern
should all be equal.

See Also

Other progress: tar_canceled(), tar_completed(), tar_dispatched(), tar_errored(), tar_poll(),
tar_progress(), tar_progress_summary(), tar_skipped(), tar_watch(), tar_watch_server(),
tar_watch_ui()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(x, seq_len(2)),
tar_target(y, x, pattern = map(x)),
tar_target(z, stopifnot(y < 1.5), pattern = map(y))

)
}, ask = FALSE)
try(tar_make())
tar_progress_branches()
})
}

tar_progress_summary 133

tar_progress_summary Summarize target progress.

Description

Summarize the progress of a run of the pipeline.

Usage

tar_progress_summary(
fields = c("skipped", "dispatched", "completed", "errored", "canceled", "since"),
store = targets::tar_config_get("store")

)

Arguments

fields Optional character vector of names of progress data columns to read. Set to
NULL to read all fields.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A data frame with one row and the following optional columns that can be selected with fields.
(time is omitted by default.)

• dispatched: number of targets that were sent off to run and did not (yet) finish. These targets
may not actually be running, depending on the status and workload of parallel workers.

• completed: number of targets that completed without error or cancellation.

• errored: number of targets that threw an error.

• canceled: number of canceled targets (see tar_cancel()).

• since: how long ago progress last changed (Sys.time() - time).

• time: the time when the progress last changed (modification timestamp of the _targets/meta/progress
file).

See Also

Other progress: tar_canceled(), tar_completed(), tar_dispatched(), tar_errored(), tar_poll(),
tar_progress(), tar_progress_branches(), tar_skipped(), tar_watch(), tar_watch_server(),
tar_watch_ui()

134 tar_prune

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(x, seq_len(2)),
tar_target(y, x, pattern = map(x)),
tar_target(z, stopifnot(y < 1.5), pattern = map(y), error = "continue")

)
}, ask = FALSE)
try(tar_make())
tar_progress_summary()
})
}

tar_prune Remove targets that are no longer part of the pipeline.

Description

Remove target values from _targets/objects/ and the cloud and remove target metadata from
_targets/meta/meta for targets that are no longer part of the pipeline.

Usage

tar_prune(
cloud = TRUE,
batch_size = 1000L,
verbose = TRUE,
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

cloud Logical of length 1, whether to delete objects from the cloud if applicable (e.g.
AWS, GCP). If FALSE, files are not deleted from the cloud.

batch_size Positive integer between 1 and 1000, number of target objects to delete from the
cloud with each HTTP API request. Currently only supported for AWS. Cannot
be more than 1000.

verbose Logical of length 1, whether to print console messages to show progress when
deleting each batch of targets from each cloud bucket. Batched deletion with
verbosity is currently only supported for AWS.

tar_prune 135

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

tar_prune() is useful if you recently worked through multiple changes to your project and are now
trying to discard irrelevant data while keeping the results that still matter. Global objects and local
files with format = "file" outside the data store are unaffected. Also removes _targets/scratch/,
which is only needed while tar_make(), tar_make_clustermq(), or tar_make_future() is run-
ning. To list the targets that will be pruned without actually removing anything, use tar_prune_list().

Value

NULL except if callr_function is callr::r_bg, in which case a handle to the callr background
process is returned. Either way, the value is invisibly returned.

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets

136 tar_prune

can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

Cloud target data versioning

Some buckets in Amazon S3 or Google Cloud Storage are "versioned", which means they track
historical versions of each data object. If you use targets with cloud storage (https://books.
ropensci.org/targets/cloud-storage.html) and versioning is turned on, then targets will
record each version of each target in its metadata.

Functions like tar_read() and tar_load() load the version recorded in the local metadata, which
may not be the same as the "current" version of the object in the bucket. Likewise, functions
tar_delete() and tar_destroy() only remove the version ID of each target as recorded in the
local metadata.

If you want to interact with the latest version of an object instead of the version ID recorded in the
local metadata, then you will need to delete the object from the metadata.

1. Make sure your local copy of the metadata is current and up to date. You may need to run
tar_meta_download() or tar_meta_sync() first.

2. Run tar_unversion() to remove the recorded version IDs of your targets in the local meta-
data.

3. With the version IDs gone from the local metadata, functions like tar_read() and tar_destroy()
will use the latest version of each target data object.

4. Optional: to back up the local metadata file with the version IDs deleted, use tar_meta_upload().

See Also

tar_prune_inspect

Other clean: tar_delete(), tar_destroy(), tar_invalidate(), tar_prune_list(), tar_unversion()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_make()
Remove some targets from the pipeline.
tar_script(list(tar_target(y1, 1 + 1)), ask = FALSE)
Keep only the remaining targets in the data store.
tar_prune()
})
}

https://books.ropensci.org/targets/cloud-storage.html
https://books.ropensci.org/targets/cloud-storage.html

tar_prune_list 137

tar_prune_list List targets that tar_prune() will remove.

Description

List the targets that tar_prune() will remove. Does not actually remove any targets.

Usage

tar_prune_list(
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function

138 tar_read

call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

See tar_prune() for details.

Value

If callr_function is callr::r_bg, the return value is a handle to the callr background process
is returned. Otherwise, the return value is a character vector of target names identifying targets that
tar_prune() will remove.

See Also

tar_prune

Other clean: tar_delete(), tar_destroy(), tar_invalidate(), tar_prune(), tar_unversion()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2)

)
}, ask = FALSE)
tar_make()
Remove some targets from the pipeline.
tar_script(list(tar_target(y1, 1 + 1)), ask = FALSE)
List targets that tar_prune() will remove.
tar_prune_list()
})
}

tar_read Read a target’s value from storage.

Description

Read a target’s return value from its file in _targets/objects/. For file targets (i.e. format =
"file") the paths are returned.

tar_read() expects an unevaluated symbol for the name argument, whereas tar_read_raw() ex-
pects a character string.

tar_read 139

Usage

tar_read(
name,
branches = NULL,
meta = tar_meta(store = store),
store = targets::tar_config_get("store")

)

tar_read_raw(
name,
branches = NULL,
meta = tar_meta(store = store),
store = targets::tar_config_get("store")

)

Arguments

name Name of the target to read. tar_read() expects an unevaluated symbol for the
name argument, whereas tar_read_raw() expects a character string.

branches Integer of indices of the branches to load if the target is a pattern.

meta Data frame of metadata from tar_meta(). tar_read() with the default argu-
ments can be inefficient for large pipelines because all the metadata is stored in
a single file. However, if you call tar_meta() beforehand and supply it to the
meta argument, then successive calls to tar_read() may run much faster.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

The target’s return value from its file in _targets/objects/, or the paths to the custom files and
directories if format = "file" was set.

Cloud target data versioning

Some buckets in Amazon S3 or Google Cloud Storage are "versioned", which means they track
historical versions of each data object. If you use targets with cloud storage (https://books.
ropensci.org/targets/cloud-storage.html) and versioning is turned on, then targets will
record each version of each target in its metadata.

Functions like tar_read() and tar_load() load the version recorded in the local metadata, which
may not be the same as the "current" version of the object in the bucket. Likewise, functions
tar_delete() and tar_destroy() only remove the version ID of each target as recorded in the
local metadata.

If you want to interact with the latest version of an object instead of the version ID recorded in the
local metadata, then you will need to delete the object from the metadata.

https://books.ropensci.org/targets/cloud-storage.html
https://books.ropensci.org/targets/cloud-storage.html

140 tar_renv

1. Make sure your local copy of the metadata is current and up to date. You may need to run
tar_meta_download() or tar_meta_sync() first.

2. Run tar_unversion() to remove the recorded version IDs of your targets in the local meta-
data.

3. With the version IDs gone from the local metadata, functions like tar_read() and tar_destroy()
will use the latest version of each target data object.

4. Optional: to back up the local metadata file with the version IDs deleted, use tar_meta_upload().

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other storage: tar_format(), tar_load(), tar_load_everything(), tar_objects()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(tar_target(x, 1 + 1))

})
tar_make()
tar_read(x)
tar_read_raw("x")
})
}

tar_renv Set up package dependencies for compatibility with renv

Description

Write package dependencies to a script file (by default, named _targets_packages.R in the root
project directory). Each package is written to a separate line as a standard library() call (e.g.
library(package)) so renv can identify them automatically.

tar_renv 141

Usage

tar_renv(
extras = c("bslib", "crew", "gt", "markdown", "rstudioapi", "shiny", "shinybusy",

"shinyWidgets", "visNetwork"),
path = "_targets_packages.R",
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script")

)

Arguments

extras Character vector of additional packages to declare as project dependencies.

path Character of length 1, path to the script file to populate with library() calls.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

Details

This function gets called for its side-effect, which writes package dependencies to a script for com-
patibility with renv. The generated file should not be edited by hand and will be overwritten each
time tar_renv() is called.

The behavior of renv is to create and manage a project-local R library and keep a record of project
dependencies in a file called renv.lock. To identify dependencies, renv crawls through code

142 tar_renv

to find packages explicitly mentioned using library(), require(), or ::. However, targets
manages packages in a way that hides dependencies from renv. tar_renv() finds package depen-
dencies that would be otherwise hidden to renv because they are declared using the targets API.
Thus, calling tar_renv this is only necessary if using tar_option_set() or tar_target() to use
specialized storage formats or manage packages.

With the script written by tar_renv(), renv is able to crawl the file to identify package dependen-
cies (with renv::dependencies()). tar_renv() only serves to make your targets project com-
patible with renv, it is still the users responsibility to call renv::init() and renv::snapshot()
directly to initialize and manage a project-local R library. This allows your targets pipeline to
have its own self-contained R library separate from your standard R library. See https://rstudio.
github.io/renv/index.html for more information.

Value

Nothing, invisibly.

Performance

If you use renv, then overhead from project initialization could slow down tar_make() and friends.
If you experience slowness, please make sure your renv library is on a fast file system. (For exam-
ple, slow network drives can severely reduce performance.) In addition, you can disable the slowest
renv initialization checks. After confirming at https://rstudio.github.io/renv/reference/
config.html that you can safely disable these checks, you can write lines RENV_CONFIG_RSPM_ENABLED=false,
RENV_CONFIG_SANDBOX_ENABLED=false, and RENV_CONFIG_SYNCHRONIZED_CHECK=false in your
user-level .Renviron file. If you disable the synchronization check, remember to call renv::status()
periodically to check the health of your renv project library.

See Also

https://rstudio.github.io/renv/articles/renv.html

Other scripts: tar_edit(), tar_github_actions(), tar_helper(), tar_script()

Examples

tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({
library(targets)
library(tarchetypes)
tar_option_set(packages = c("tibble", "qs"))
list()

}, ask = FALSE)
tar_renv()
writeLines(readLines("_targets_packages.R"))

})
tar_option_reset()

https://rstudio.github.io/renv/index.html
https://rstudio.github.io/renv/index.html
https://rstudio.github.io/renv/reference/config.html
https://rstudio.github.io/renv/reference/config.html
https://rstudio.github.io/renv/articles/renv.html

tar_repository_cas 143

tar_repository_cas Define a custom content-addressable storage (CAS) repository (an ex-
perimental feature).

Description

Define a custom storage repository that uses content-addressable storage (CAS).

Usage

tar_repository_cas(
upload,
download,
exists = NULL,
list = NULL,
consistent = FALSE,
substitute = base::list()

)

Arguments

upload A function with arguments key and path, in that order. This function should
upload the file or directory from path to the CAS system. path is where the file
is originally saved to disk outside the CAS system. It could be a staging area
or a custom format = "file" location. key denotes the name of the destination
data object in the CAS system.
To differentiate between format = "file" targets and non-"file" targets, the
upload method can use tar_format_get(). For example, to make tar_repository_cas_local()
efficient, upload moves the file if targets::tar_format_get() == "file"
and copies it otherwise.
See the "Repository functions" section for more details.

download A function with arguments key and path, in that order. This function should
download the data object at key from the CAS system to the file or directory at
path. key denotes the name of the data object in the CAS system. path is a
temporary staging area and not the final destination.
Please be careful to avoid deleting the object at key from the CAS system. If the
CAS system is a local file system, for example, download should copy the file
and not simply move it (e.g. please avoid file.rename()).
See the "Repository functions" section for more details.

exists A function with a single argument key, where key is a single character string
(length(key) is 1) to identify a single object in the CAS system.
The exists function should check if there is a single object at a single key in
the CAS system. It is ignored if list is given and consistent is TRUE.
See the "Repository functions" section for more details.

144 tar_repository_cas

list Either NULL or an optional function with a single argument named keys.
The list function increases efficiency by reducing repeated calls to the exists
function (see above) or entirely avoiding them if consistent is ‘TRUE.
The list function should return a character vector of keys that already exist in
the CAS system. The keys argument of list is a character vector of CAS keys
(hashes) which are already recorded in the pipeline metadata (tar_meta()). For
greater efficiency, the list function can restrict its query to these existing keys
instead of trying to list the billions of keys that could exist in a CAS system. See
the source code of tar_cas_l() for an example of how this can work for a local
file system CAS.
See the "Repository functions" section for more details.

consistent Logical. Set to TRUE if the storage platform is strongly read-after-write con-
sistent. Set to FALSE if the platform is not necessarily strongly read-after-write
consistent.
A data storage system is said to have strong read-after-write consistency if a new
object is fully available for reading as soon as the write operation finishes. Many
modern cloud services like Amazon S3 and Google Cloud Storage have strong
read-after-write consistency, meaning that if you upload an object with a PUT
request, then a GET request immediately afterwards will retrieve the precise
version of the object you just uploaded.
Some storage systems do not have strong read-after-write consistency. One ex-
ample is network file systems (NFS). On a computing cluster, if one node cre-
ates a file on an NFS, then there is a delay before other nodes can access the
new file. targets handles this situation by waiting for the new file to appear
with the correct hash before attempting to use it in downstream computations.
consistent = FALSE imposes a waiting period in which targets repeatedly
calls the exists method until the file becomes available (at time intervals con-
figurable with tar_resources_network()). These extra calls to exists may
come with a little extra latency / computational burden, but on systems which are
not strongly read-after-write consistent, it is the only way targets can safely
use the current results for downstream computations.

substitute Named list of values to be inserted into the body of each custom function in
place of symbols in the body. For example, if upload = function(key, path)
do_upload(key, path, bucket = X) and substitute = list(X = "my_aws_bucket"),
then the upload function will actually end up being function(key, path)
do_upload(key, path, bucket = "my_aws_bucket").
Please do not include temporary or sensitive information such as authentication
credentials. If you do, then targets will write them to metadata on disk, and a
malicious actor could steal and misuse them. Instead, pass sensitive information
as environment variables using tar_resources_repository_cas(). These en-
vironment variables only exist in the transient memory spaces of the R sessions
of the local and worker processes.

Content-addressable storage

Normally, targets organizes output data based on target names. For example, if a pipeline has a
single target x with default settings, then tar_make() saves the output data to the file _targets/objects/x.

tar_repository_cas 145

When the output of x changes, tar_make() overwrites _targets/objects/x. In other words, no
matter how many changes happen to x, the data store always looks like this:

_targets/
meta/

meta
objects/

x

By contrast, with content-addressable storage (CAS), targets organizes outputs based on the
hashes of their contents. The name of each output file is its hash, and the metadata maps these hashes
to target names. For example, suppose target x has repository = tar_repository_cas_local("my_cas").
When the output of x changes, tar_make() creates a new file inside my_cas/ without overwriting
or deleting any other files in that folder. If you run tar_make() three different times with three
different values of x, then storage will look like this:

_targets/
meta/

meta
my_cas/

1fffeb09ad36e84a
68328d833e6361d3
798af464fb2f6b30

The next call to tar_read(x) uses tar_meta(x)$data to look up the current hash of x. If tar_meta(x)$data
returns "1fffeb09ad36e84a", then tar_read(x) returns the data from my_cas/1fffeb09ad36e84a.
Files my_cas/68328d833e6361d3 and and my_cas/798af464fb2f6b30 are left over from previous
values of x.

Because CAS accumulates historical data objects, it is ideal for data versioning and collaboration.
If you commit the _targets/meta/meta file to version control alongside the source code, then you
can revert to a previous state of your pipeline with all your targets up to date, and a colleague can
leverage your hard-won results using a fork of your code and metadata.

The downside of CAS is the cost of accumulating many data objects over time. Most pipelines that
use CAS should have a garbage collection system or retention policy to remove data objects when
they no longer needed.

The tar_repository_cas() function lets you create your own CAS system for targets. You can
supply arbitrary custom methods to upload, download, and check for the existence of data objects.
Your custom CAS system can exist locally on a shared file system or remotely on the cloud (e.g.
in an AWS S3 bucket). See the "Repository functions" section and the documentation of individual
arguments for advice on how to write your own methods.

The tar_repository_cas_local() function has an example CAS system based on a local folder
on disk. It uses tar_cas_u() for uploads, tar_cas_d() for downloads, and tar_cas_l() for
listing keys.

Repository functions

In tar_repository_cas(), functions upload, download, exists, and keys must be completely
pure and self-sufficient. They must load or namespace all their own packages, and they must not

146 tar_repository_cas

depend on any custom user-defined functions or objects in the global environment of your pipeline.
targets converts each function to and from text, so it must not rely on any data in the closure. This
disqualifies functions produced by Vectorize(), for example.

upload and download can assume length(path) is 1, but they should account for the possibility
that path could be a directory. To simply avoid supporting directories, upload could simply call an
assertion:

targets::tar_assert_not_dir(
path,
msg = "This CAS upload method does not support directories."

)

Otherwise, support for directories may require handling them as a special case. For example,
upload and download could copy all the files in the given directory, or they could manage the
directory as a zip archive.

Some functions may need to be adapted and configured based on other inputs. For example, you
may want to define upload = \(key, path) file.rename(path, file.path(folder, key))
but do not want to hard-code a value of folder when you write the underlying function. The
substitute argument handles this situation. For example, if substitute is list(folder = "my_folder"),
then upload will end up as \(key, path) file.rename(path, file.path("my_folder", key)).

Temporary or sensitive such as authentication credentials should not be injected this way into the
function body. Instead, pass them as environment variables using tar_resources_repository_cas().

See Also

Other content-addressable storage: tar_repository_cas_local(), tar_repository_cas_local_gc()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
repository <- tar_repository_cas(
upload = function(key, path) {

if (dir.exists(path)) {
stop("This CAS repository does not support directory outputs.")

}
if (!file.exists("cas")) {

dir.create("cas", recursive = TRUE)
}
file.rename(path, file.path("cas", key))

},
download = function(key, path) {

file.copy(file.path("cas", key), path)
},
exists = function(key) {

file.exists(file.path("cas", key))
},

tar_repository_cas_local 147

list = function(keys) {
keys[file.exists(file.path("cas", keys))]

},
consistent = FALSE

)
write_file <- function(object) {

writeLines(as.character(object), "file.txt")
"file.txt"

}
list(

tar_target(x, c(2L, 4L), repository = repository),
tar_target(

y,
x,
pattern = map(x),
format = "qs",
repository = repository

),
tar_target(z, write_file(y), format = "file", repository = repository)

)
})
tar_make()
tar_read(y)
tar_read(z)
list.files("cas")
tar_meta(any_of(c("x", "z")), fields = any_of("data"))
})
}

tar_repository_cas_local

Local content-addressable storage (CAS) repository (an experimental
feature).

Description

Local content-addressable storage (CAS) repository.

Usage

tar_repository_cas_local(path = NULL, consistent = FALSE)

Arguments

path Character string, file path to the CAS repository where all the data object files
will be stored. NULL to default to file.path(tar_config_get("store"),
"cas") (usually "_targets/cas/").

148 tar_repository_cas_local

consistent Logical. Set to TRUE if the storage platform is strongly read-after-write con-
sistent. Set to FALSE if the platform is not necessarily strongly read-after-write
consistent.
A data storage system is said to have strong read-after-write consistency if a new
object is fully available for reading as soon as the write operation finishes. Many
modern cloud services like Amazon S3 and Google Cloud Storage have strong
read-after-write consistency, meaning that if you upload an object with a PUT
request, then a GET request immediately afterwards will retrieve the precise
version of the object you just uploaded.
Some storage systems do not have strong read-after-write consistency. One ex-
ample is network file systems (NFS). On a computing cluster, if one node cre-
ates a file on an NFS, then there is a delay before other nodes can access the
new file. targets handles this situation by waiting for the new file to appear
with the correct hash before attempting to use it in downstream computations.
consistent = FALSE imposes a waiting period in which targets repeatedly
calls the exists method until the file becomes available (at time intervals con-
figurable with tar_resources_network()). These extra calls to exists may
come with a little extra latency / computational burden, but on systems which are
not strongly read-after-write consistent, it is the only way targets can safely
use the current results for downstream computations.

Details

Pass to the repository argument of tar_target() or tar_option_set() to use a local CAS
system.

Value

A character string from tar_repository_cas() which may be passed to the repository argument
of tar_target() or tar_option_set() to use a local CAS system.

Content-addressable storage

Normally, targets organizes output data based on target names. For example, if a pipeline has a
single target x with default settings, then tar_make() saves the output data to the file _targets/objects/x.
When the output of x changes, tar_make() overwrites _targets/objects/x. In other words, no
matter how many changes happen to x, the data store always looks like this:

_targets/
meta/

meta
objects/

x

By contrast, with content-addressable storage (CAS), targets organizes outputs based on the
hashes of their contents. The name of each output file is its hash, and the metadata maps these hashes
to target names. For example, suppose target x has repository = tar_repository_cas_local("my_cas").
When the output of x changes, tar_make() creates a new file inside my_cas/ without overwriting

tar_repository_cas_local 149

or deleting any other files in that folder. If you run tar_make() three different times with three
different values of x, then storage will look like this:

_targets/
meta/

meta
my_cas/

1fffeb09ad36e84a
68328d833e6361d3
798af464fb2f6b30

The next call to tar_read(x) uses tar_meta(x)$data to look up the current hash of x. If tar_meta(x)$data
returns "1fffeb09ad36e84a", then tar_read(x) returns the data from my_cas/1fffeb09ad36e84a.
Files my_cas/68328d833e6361d3 and and my_cas/798af464fb2f6b30 are left over from previous
values of x.

Because CAS accumulates historical data objects, it is ideal for data versioning and collaboration.
If you commit the _targets/meta/meta file to version control alongside the source code, then you
can revert to a previous state of your pipeline with all your targets up to date, and a colleague can
leverage your hard-won results using a fork of your code and metadata.

The downside of CAS is the cost of accumulating many data objects over time. Most pipelines that
use CAS should have a garbage collection system or retention policy to remove data objects when
they no longer needed.

The tar_repository_cas() function lets you create your own CAS system for targets. You can
supply arbitrary custom methods to upload, download, and check for the existence of data objects.
Your custom CAS system can exist locally on a shared file system or remotely on the cloud (e.g.
in an AWS S3 bucket). See the "Repository functions" section and the documentation of individual
arguments for advice on how to write your own methods.

The tar_repository_cas_local() function has an example CAS system based on a local folder
on disk. It uses tar_cas_u() for uploads, tar_cas_d() for downloads, and tar_cas_l() for
listing keys.

See Also

Other content-addressable storage: tar_repository_cas(), tar_repository_cas_local_gc()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
repository <- tar_repository_cas_local("cas")
write_file <- function(object) {
writeLines(as.character(object), "file.txt")
"file.txt"

}
list(

150 tar_repository_cas_local_gc

tar_target(x, c(2L, 4L), repository = repository),
tar_target(

y,
x,
pattern = map(x),
format = "qs",
repository = repository

),
tar_target(z, write_file(y), format = "file", repository = repository)

)
})
tar_make()
tar_read(y)
tar_read(z)
list.files("cas")
tar_meta(any_of(c("x", "z")), fields = any_of("data"))
})
}

tar_repository_cas_local_gc

Local CAS garbage collection

Description

Garbage collection for a local content-addressable storage system.

Usage

tar_repository_cas_local_gc(
path = NULL,
store = targets::tar_config_get("store")

)

Arguments

path Character string, file path to the CAS repository where all the data object files
will be stored. NULL to default to file.path(tar_config_get("store"),
"cas") (usually "_targets/cas/").

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

Deletes all the files in the local CAS which are not in tar_meta(targets_only = TRUE)$data,
including all locally saved historical data of the pipeline. This clears disk space, but at the expense
of removing historical data and data from other colleagues who worked on the same project.

tar_repository_cas_local_gc 151

Value

NULL (invisibly). Called for its side effects. Removes files from the CAS repository at path.

Content-addressable storage

Normally, targets organizes output data based on target names. For example, if a pipeline has a
single target x with default settings, then tar_make() saves the output data to the file _targets/objects/x.
When the output of x changes, tar_make() overwrites _targets/objects/x. In other words, no
matter how many changes happen to x, the data store always looks like this:

_targets/
meta/

meta
objects/

x

By contrast, with content-addressable storage (CAS), targets organizes outputs based on the
hashes of their contents. The name of each output file is its hash, and the metadata maps these hashes
to target names. For example, suppose target x has repository = tar_repository_cas_local("my_cas").
When the output of x changes, tar_make() creates a new file inside my_cas/ without overwriting
or deleting any other files in that folder. If you run tar_make() three different times with three
different values of x, then storage will look like this:

_targets/
meta/

meta
my_cas/

1fffeb09ad36e84a
68328d833e6361d3
798af464fb2f6b30

The next call to tar_read(x) uses tar_meta(x)$data to look up the current hash of x. If tar_meta(x)$data
returns "1fffeb09ad36e84a", then tar_read(x) returns the data from my_cas/1fffeb09ad36e84a.
Files my_cas/68328d833e6361d3 and and my_cas/798af464fb2f6b30 are left over from previous
values of x.

Because CAS accumulates historical data objects, it is ideal for data versioning and collaboration.
If you commit the _targets/meta/meta file to version control alongside the source code, then you
can revert to a previous state of your pipeline with all your targets up to date, and a colleague can
leverage your hard-won results using a fork of your code and metadata.

The downside of CAS is the cost of accumulating many data objects over time. Most pipelines that
use CAS should have a garbage collection system or retention policy to remove data objects when
they no longer needed.

The tar_repository_cas() function lets you create your own CAS system for targets. You can
supply arbitrary custom methods to upload, download, and check for the existence of data objects.
Your custom CAS system can exist locally on a shared file system or remotely on the cloud (e.g.
in an AWS S3 bucket). See the "Repository functions" section and the documentation of individual
arguments for advice on how to write your own methods.

152 tar_reprex

The tar_repository_cas_local() function has an example CAS system based on a local folder
on disk. It uses tar_cas_u() for uploads, tar_cas_d() for downloads, and tar_cas_l() for
listing keys.

See Also

Other content-addressable storage: tar_repository_cas(), tar_repository_cas_local()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set(seed = NA, repository = tar_repository_cas_local())
list(tar_target(x, sample.int(n = 9e9, size = 1)))

})
for (index in seq_len(3)) tar_make(reporter = "silent")
list.files("_targets/cas")
tar_repository_cas_local_gc()
list.files("_targets/cas")
tar_meta(names = any_of("x"), fields = any_of("data"))
})
}

tar_reprex Reproducible example of targets with reprex

Description

Create a reproducible example of a targets pipeline with the reprex package.

Usage

tar_reprex(pipeline = tar_target(example_target, 1), run = tar_make(), ...)

Arguments

pipeline R code for the target script file _targets.R. library(targets) is automati-
cally written at the top.

run R code to inspect and run the pipeline.
... Named arguments passed to reprex::reprex().

Details

The best way to get help with an issue is to create a reproducible example of the problem and post
it to https://github.com/ropensci/targets/discussions tar_reprex() facilitates this pro-
cess. It is like reprex::reprex({targets::tar_script(...); tar_make()}), but more conve-
nient.

https://github.com/ropensci/targets/discussions

tar_resources 153

Value

A character vector of rendered the reprex, invisibly.

See Also

Other help: targets-package, use_targets(), use_targets_rmd()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_reprex(

pipeline = {
list(

tar_target(data, data.frame(x = sample.int(1e3))),
tar_target(summary, mean(data$x, na.rm = TRUE))

)
},
run = {

tar_visnetwork()
tar_make()

}
)
}

tar_resources Target resources

Description

Create a resources argument for tar_target() or tar_option_set().

Usage

tar_resources(
aws = tar_option_get("resources")$aws,
clustermq = tar_option_get("resources")$clustermq,
crew = tar_option_get("resources")$crew,
custom_format = tar_option_get("resources")$custom_format,
feather = tar_option_get("resources")$feather,
fst = tar_option_get("resources")$fst,
future = tar_option_get("resources")$future,
gcp = tar_option_get("resources")$gcp,
network = tar_option_get("resources")$network,
parquet = tar_option_get("resources")$parquet,
qs = tar_option_get("resources")$qs,
repository_cas = tar_option_get("resources")$repository_cas,
url = tar_option_get("resources")$url

)

154 tar_resources

Arguments

aws Output of function tar_resources_aws(). Amazon Web Services (AWS) S3
storage settings for tar_target(..., repository = "aws"). See the cloud
storage section of https://books.ropensci.org/targets/data.html for de-
tails for instructions.

clustermq Output of function tar_resources_clustermq(). Optional clustermq set-
tings for tar_make_clustermq(), including the log_worker and template
arguments of clustermq::workers(). clustermq workers are persistent, so
there is not a one-to-one correspondence between workers and targets. The
clustermq resources apply to the workers, not the targets. So the correct way to
assign clustermq resources is through tar_option_set(), not tar_target().
clustermq resources in individual tar_target() calls will be ignored.

crew Output of function tar_resources_crew() with target-specific settings for in-
tegration with the crew R package. These settings are arguments to the push()
method of the controller or controller group object which control things like
auto-scaling behavior and the controller to use in the case of a controller group.

custom_format Output of function tar_resources_custom_format() with configuration de-
tails for tar_format() storage formats.

feather Output of function tar_resources_feather(). Non-default arguments to arrow::read_feather()
and arrow::write_feather() for arrow/feather-based storage formats. Ap-
plies to all formats ending with the "_feather" suffix. For details on formats,
see the format argument of tar_target().

fst Output of function tar_resources_fst(). Non-default arguments to fst::read_fst()
and fst::write_fst() for fst-based storage formats. Applies to all formats
ending with "fst" in the name. For details on formats, see the format argument
of tar_target().

future Output of function tar_resources_future(). Optional future settings for
tar_make_future(), including the resources argument of future::future(),
which can include values to insert in template placeholders in future.batchtools
template files. This is how to supply the resources argument of future::future()
for targets. Resources supplied through future::plan() and future::tweak()
are completely ignored.

gcp Output of function tar_resources_gcp(). Google Cloud Storage bucket set-
tings for tar_target(..., repository = "gcp"). See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for in-
structions.

network Output of function tar_resources_network(). Settings to configure how to
handle unreliable network connections in the case of uploading, downloading,
and checking data in situations that rely on network file systems or HTTP/HTTPS
requests. Examples include retries and timeouts for internal storage manage-
ment operations for storage = "worker" or format = "file" (on network file
systems), format = "url", repository = "aws", and repository = "gcp". These
settings do not apply to actions you take in the custom R command of the target.

parquet Output of function tar_resources_parquet(). Non-default arguments to arrow::read_parquet()
and arrow::write_parquet() for arrow/parquet-based storage formats. Ap-

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_resources 155

plies to all formats ending with the "_parquet" suffix. For details on formats,
see the format argument of tar_target().

qs Output of function tar_resources_qs(). Non-default arguments to qs2::qs_read()
and qs2::qs_save() for targets with format = "qs". For details on formats,
see the format argument of tar_target().

repository_cas Output of function tar_resources_repository_cas() with configuration de-
tails for tar_repository_cas() storage repositories.

url Output of function tar_resources_url(). Non-default settings for storage for-
mats ending with the "_url" suffix. These settings include the curl handle for
extra control over HTTP requests. For details on formats, see the format argu-
ment of tar_target().

Value

A list of objects of class "tar_resources" with non-default settings of various optional backends
for data storage and high-performance computing.

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources_aws(), tar_resources_clustermq(), tar_resources_crew(),
tar_resources_custom_format(), tar_resources_feather(), tar_resources_fst(), tar_resources_future(),
tar_resources_gcp(), tar_resources_network(), tar_resources_parquet(), tar_resources_qs(),
tar_resources_repository_cas(), tar_resources_url()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
format = "qs",
resources = tar_resources(

qs = tar_resources_qs(preset = "fast"),

156 tar_resources_aws

future = tar_resources_future(resources = list(n_cores = 1))
)

)

tar_resources_aws Target resources: Amazon Web Services (AWS) S3 storage

Description

Create the aws argument of tar_resources() to specify optional settings to AWS for tar_target(...,
repository = "aws"). See the format argument of tar_target() for details.

Usage

tar_resources_aws(
bucket = targets::tar_option_get("resources")awsbucket,
prefix = targets::tar_option_get("resources")awsprefix,
region = targets::tar_option_get("resources")awsregion,
endpoint = targets::tar_option_get("resources")awsendpoint,
s3_force_path_style = targets::tar_option_get("resources")awss3_force_path_style,
part_size = targets::tar_option_get("resources")awspart_size,
page_size = targets::tar_option_get("resources")awspage_size,
max_tries = targets::tar_option_get("resources")awsmax_tries,
seconds_timeout = targets::tar_option_get("resources")awsseconds_timeout,
close_connection = targets::tar_option_get("resources")awsclose_connection,
verbose = targets::tar_option_get("resources")awsverbose,
...

)

Arguments

bucket Character of length 1, name of an existing bucket to upload and download the
return values of the affected targets during the pipeline.

prefix Character of length 1, "directory path" in the bucket where your target object
and metadata will go. Please supply an explicit prefix unique to your targets
project. In the future, targets will begin requiring explicitly user-supplied pre-
fixes. (This last note was added on 2023-08-24: targets version 1.2.2.9000.)

region Character of length 1, AWS region containing the S3 bucket. Set to NULL to use
the default region.

endpoint Character of length 1, URL endpoint for S3 storage. Defaults to the Amazon
AWS endpoint if NULL. Example: To use the S3 protocol with Google Cloud
Storage, set endpoint = "https://storage.googleapis.com" and region =
"auto". (A custom endpoint may require that you explicitly set a custom re-
gion directly in tar_resources_aws(). region = "auto" happens to work
with Google Cloud.) Also make sure to create HMAC access keys in the Google
Cloud Storage console (under Settings => Interoperability) and set the AWS_ACCESS_KEY_ID

tar_resources_aws 157

and AWS_SECRET_ACCESS_KEY environment variables accordingly. After that,
you should be able to use S3 storage formats with Google Cloud storage buck-
ets. There is one limitation, however: even if your bucket has object versioning
turned on, targets may fail to record object versions. Google Cloud Storage in
particular has this incompatibility.

s3_force_path_style

Logical of length 1, whether to use path-style addressing for S3 requests.

part_size Positive numeric of length 1, number of bytes for each part of a multipart upload.
(Except the last part, which is the remainder.) In a multipart upload, each part
must be at least 5 MB. The default value of the part_size argument is 5 * (2 ^
20).

page_size Positive integer of length 1, number of items in each page for paginated HTTP
requests such as listing objects.

max_tries Positive integer of length 1, maximum number of attempts to access a network
resource on AWS.

seconds_timeout

Positive numeric of length 1, number of seconds until an HTTP connection times
out.

close_connection

Logical of length 1, whether to close HTTP connections immediately.

verbose Logical of length 1, whether to print console messages when running computa-
tionally expensive operations such as listing objects in a large bucket.

... Named arguments to functions in paws.storage::s3() to manage S3 storage.
The documentation of these specific functions is linked from https://www.paws-r-sdk.com/docs/s3/.
The configurable functions themselves are:

• paws.storage::s3()$head_object()

• paws.storage::s3()$get_object()

• paws.storage::s3()$delete_object()

• paws.storage::s3()$put_object()

• paws.storage::s3()$create_multipart_upload()

• paws.storage::s3()$abort_multipart_upload()

• paws.storage::s3()$complete_multipart_upload()

• paws.storage::s3()$upload_part() The named arguments in ... must
not be any of "bucket", "Bucket", "key", "Key", "prefix", "region",
"part_size", "endpoint", "version", "VersionId", "body", "Body",
"metadata", "Metadata", "UploadId", "MultipartUpload", or "PartNumber".

Details

See the cloud storage section of https://books.ropensci.org/targets/data.html for details
for instructions.

Value

Object of class "tar_resources_aws", to be supplied to the aws argument of tar_resources().

https://books.ropensci.org/targets/data.html

158 tar_resources_clustermq

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources(), tar_resources_clustermq(), tar_resources_crew(), tar_resources_custom_format(),
tar_resources_feather(), tar_resources_fst(), tar_resources_future(), tar_resources_gcp(),
tar_resources_network(), tar_resources_parquet(), tar_resources_qs(), tar_resources_repository_cas(),
tar_resources_url()

Examples

Somewhere in you target script file (usually _targets.R):
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_target(

name,
command(),
format = "qs",
repository = "aws",
resources = tar_resources(
aws = tar_resources_aws(

bucket = "yourbucketname",
prefix = "_targets"

),
qs = tar_resources_qs(preset = "fast"),

)
)
}

tar_resources_clustermq

Target resources: clustermq high-performance computing

tar_resources_clustermq 159

Description

Create the clustermq argument of tar_resources() to specify optional high-performance com-
puting settings for tar_make_clustermq(). For details, see the documentation of the clustermq
R package and the corresponding argument names in this help file.

Usage

tar_resources_clustermq(
template = targets::tar_option_get("resources")$clustermq$template

)

Arguments

template Named list, template argument to clustermq::workers(). Defaults to an
empty list.

Details

clustermq workers are persistent, so there is not a one-to-one correspondence between workers and
targets. The clustermq resources apply to the workers, not the targets. So the correct way to assign
clustermq resources is through tar_option_set(), not tar_target(). clustermq resources in
individual tar_target() calls will be ignored.

Value

Object of class "tar_resources_clustermq", to be supplied to the clustermq argument of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources(), tar_resources_aws(), tar_resources_crew(), tar_resources_custom_format(),
tar_resources_feather(), tar_resources_fst(), tar_resources_future(), tar_resources_gcp(),
tar_resources_network(), tar_resources_parquet(), tar_resources_qs(), tar_resources_repository_cas(),
tar_resources_url()

160 tar_resources_crew

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
resources = tar_resources(
clustermq = tar_resources_clustermq(template = list(n_cores = 2))

)
)

tar_resources_crew Target resources: crew high-performance computing

Description

Create the crew argument of tar_resources() to specify optional target settings.

Usage

tar_resources_crew(
controller = targets::tar_option_get("resources")$crew$controller,
scale = NULL,
seconds_timeout = targets::tar_option_get("resources")$crew$seconds_timeout

)

Arguments

controller Character of length 1. If tar_option_get("controller") is a crew controller
group, the controller argument of tar_resources_crew() indicates which
controller in the controller group to use. If you need heterogeneous workers, you
can leverage this argument to send different targets to different worker groups.

scale Deprecated in version 1.3.0.9002 (2023-10-02). No longer necessary.
seconds_timeout

Positive numeric of length 1, optional task timeout passed to the .timeout ar-
gument of mirai::mirai() (after converting to milliseconds).

Details

tar_resources_crew() accepts target-specific settings for integration with the crew R package.
These settings are arguments to the push() method of the controller or controller group object
which control things like auto-scaling behavior and the controller to use in the case of a controller
group.

Value

Object of class "tar_resources_crew", to be supplied to the crew argument of tar_resources().

tar_resources_custom_format 161

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources(), tar_resources_aws(), tar_resources_clustermq(), tar_resources_custom_format(),
tar_resources_feather(), tar_resources_fst(), tar_resources_future(), tar_resources_gcp(),
tar_resources_network(), tar_resources_parquet(), tar_resources_qs(), tar_resources_repository_cas(),
tar_resources_url()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
resources = tar_resources(
crew = tar_resources_crew(seconds_timeout = 5)

)
)

tar_resources_custom_format

Target resources for custom storage formats

Description

Create the custom_format argument of tar_resources() to specify optional target settings for
custom storage formats.

Usage

tar_resources_custom_format(
envvars = targets::tar_option_get("resources")$custom_format$envvars

)

162 tar_resources_custom_format

Arguments

envvars Named character vector of environment variables. These environment variables
are temporarily set just before each call to the storage methods you define in
tar_format(). Specific methods like read can retrieve values from these envi-
ronment variables using Sys.getenv(). Set envvars to NULL to omit entirely.

Details

tar_resources_custom_format() accepts target-specific settings to customize tar_format()
storage formats.

Value

Object of class "tar_resources_custom_format", to be supplied to the custom_format argument
of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources(), tar_resources_aws(), tar_resources_clustermq(), tar_resources_crew(),
tar_resources_feather(), tar_resources_fst(), tar_resources_future(), tar_resources_gcp(),
tar_resources_network(), tar_resources_parquet(), tar_resources_qs(), tar_resources_repository_cas(),
tar_resources_url()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name = target_name,
command = data.frame(x = 1),
format = tar_format(
read = function(path) {

readRDS(file = path)
},

tar_resources_feather 163

write = function(object, path) {
version <- as.integer(Sys.getenv("SERIALIZATION", unset = "2"))
saveRDS(object = object, file = path, version = version)

}
),
resources = tar_resources(

custom_format = tar_resources_custom_format(
envvars = c(SERIALIZATION = "3")

)
)

)

tar_resources_feather Target resources: feather storage formats

Description

Create the feather argument of tar_resources() to specify optional settings for feather data frame
storage formats powered by the arrow R package. See the format argument of tar_target() for
details.

Usage

tar_resources_feather(
compression = targets::tar_option_get("resources")$feather$compression,
compression_level = targets::tar_option_get("resources")$feather$compression_level

)

Arguments

compression Character of length 1, compression argument of arrow::write_feather().
Defaults to "default".

compression_level

Numeric of length 1, compression_level argument of arrow::write_feather().
Defaults to NULL.

Value

Object of class "tar_resources_feather", to be supplied to the feather argument of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =

164 tar_resources_fst

tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources(), tar_resources_aws(), tar_resources_clustermq(), tar_resources_crew(),
tar_resources_custom_format(), tar_resources_fst(), tar_resources_future(), tar_resources_gcp(),
tar_resources_network(), tar_resources_parquet(), tar_resources_qs(), tar_resources_repository_cas(),
tar_resources_url()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
format = "feather",
resources = tar_resources(
feather = tar_resources_feather(compression = "lz4")

)
)

tar_resources_fst Target resources: fst storage formats

Description

Create the fst argument of tar_resources() to specify optional settings for big data frame storage
formats powered by the fst R package. See the format argument of tar_target() for details.

Usage

tar_resources_fst(compress = targets::tar_option_get("resources")fstcompress)

Arguments

compress Numeric of length 1, compress argument of fst::write_fst(). Defaults to
50.

Value

Object of class "tar_resources_fst", to be supplied to the fst argument of tar_resources().

tar_resources_future 165

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources(), tar_resources_aws(), tar_resources_clustermq(), tar_resources_crew(),
tar_resources_custom_format(), tar_resources_feather(), tar_resources_future(), tar_resources_gcp(),
tar_resources_network(), tar_resources_parquet(), tar_resources_qs(), tar_resources_repository_cas(),
tar_resources_url()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
format = "fst_tbl",
resources = tar_resources(
fst = tar_resources_fst(compress = 100)

)
)

tar_resources_future Target resources: future high-performance computing

Description

Create the future argument of tar_resources() to specify optional high-performance computing
settings for tar_make_future(). This is how to supply the resources argument of future::future()
for targets. Resources supplied through future::plan() and future::tweak() are completely
ignored. For details, see the documentation of the future R package and the corresponding argu-
ment names in this help file.

166 tar_resources_future

Usage

tar_resources_future(
plan = NULL,
resources = targets::tar_option_get("resources")$future$resources

)

Arguments

plan A future::plan() object or NULL, a target-specific future plan. Defaults to
NULL.

resources Named list, resources argument to future::future(). This argument is not
supported in some versions of future. For versions of future where resources
is not supported, instead supply resources to future::tweak() and assign the
returned plan to the plan argument of tar_resources_future(). The default
value of resources in tar_resources_future() is an empty list.

Value

Object of class "tar_resources_future", to be supplied to the future argument of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources(), tar_resources_aws(), tar_resources_clustermq(), tar_resources_crew(),
tar_resources_custom_format(), tar_resources_feather(), tar_resources_fst(), tar_resources_gcp(),
tar_resources_network(), tar_resources_parquet(), tar_resources_qs(), tar_resources_repository_cas(),
tar_resources_url()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),

tar_resources_gcp 167

resources = tar_resources(
future = tar_resources_future(resources = list(n_cores = 2))

)
)

tar_resources_gcp Target resources: Google Cloud Platform (GCP) Google Cloud Stor-
age (GCS)

Description

Create the gcp argument of tar_resources() to specify optional settings for Google Cloud Storage
for targets with tar_target(..., repository = "gcp"). See the format argument of tar_target()
for details.

Usage

tar_resources_gcp(
bucket = targets::tar_option_get("resources")gcpbucket,
prefix = targets::tar_option_get("resources")gcpprefix,
predefined_acl = targets::tar_option_get("resources")gcppredefined_acl,
max_tries = targets::tar_option_get("resources")gcpmax_tries,
verbose = targets::tar_option_get("resources")gcpverbose

)

Arguments

bucket Character of length 1, name of an existing bucket to upload and download the
return values of the affected targets during the pipeline.

prefix Character of length 1, "directory path" in the bucket where your target object
and metadata will go. Please supply an explicit prefix unique to your targets
project. In the future, targets will begin requiring explicitly user-supplied pre-
fixes. (This last note was added on 2023-08-24: targets version 1.2.2.9000.)

predefined_acl Character of length 1, user access to the object. See ?googleCloudStorageR::gcs_upload
for possible values. Defaults to "private".

max_tries Positive integer of length 1, number of tries accessing a network resource on
GCP.

verbose Logical of length 1, whether to print extra messages like progress bars during
uploads and downloads. Defaults to FALSE.

Details

See the cloud storage section of https://books.ropensci.org/targets/data.html for details
for instructions.

https://books.ropensci.org/targets/data.html

168 tar_resources_network

Value

Object of class "tar_resources_gcp", to be supplied to the gcp argument of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources(), tar_resources_aws(), tar_resources_clustermq(), tar_resources_crew(),
tar_resources_custom_format(), tar_resources_feather(), tar_resources_fst(), tar_resources_future(),
tar_resources_network(), tar_resources_parquet(), tar_resources_qs(), tar_resources_repository_cas(),
tar_resources_url()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
format = "qs",
repository = "gcp",
resources = tar_resources(
gcp = tar_resources_gcp(

bucket = "yourbucketname",
prefix = "_targets"

),
qs = tar_resources_qs(preset = "fast"),

)
)

tar_resources_network Target resources for network file systems.

tar_resources_network 169

Description

In high-performance computing on network file systems, if storage = "worker" in tar_target()
or tar_option_set(), then targets waits for hashes to synchronize before continuing the pipeline.
These resources control the retry mechanism.

Usage

tar_resources_network(
max_tries = targets::tar_option_get("resources")$network$max_tries,
seconds_interval = targets::tar_option_get("resources")$network$seconds_interval,
seconds_timeout = targets::tar_option_get("resources")$network$seconds_timeout,
verbose = targets::tar_option_get("resources")$network$verbose

)

Arguments

max_tries Positive integer of length 1. Max number of tries.
seconds_interval

Positive numeric of length 1, seconds between retries.
seconds_timeout

Positive numeric of length 1. Timeout length in seconds.
verbose Logical of length 1, whether to print informative console messages.

Value

Object of class "tar_resources_network", to be supplied to the network argument of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources(), tar_resources_aws(), tar_resources_clustermq(), tar_resources_crew(),
tar_resources_custom_format(), tar_resources_feather(), tar_resources_fst(), tar_resources_future(),
tar_resources_gcp(), tar_resources_parquet(), tar_resources_qs(), tar_resources_repository_cas(),
tar_resources_url()

170 tar_resources_parquet

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
Somewhere in you target script file (usually _targets.R):
tar_target(

name = your_name,
command = your_command(),
storage = "worker",
resources = tar_resources(
network = tar_resources_network(max_tries = 3)

)
)
}

tar_resources_parquet Target resources: parquet storage formats

Description

Create the parquet argument of tar_resources() to specify optional settings for parquet data
frame storage formats powered by the arrow R package. See the format argument of tar_target()
for details.

Usage

tar_resources_parquet(
compression = targets::tar_option_get("resources")$parquet$compression,
compression_level = targets::tar_option_get("resources")$parquet$compression_level

)

Arguments

compression Character of length 1, compression argument of arrow::write_parquet().
Defaults to "snappy".

compression_level

Numeric of length 1, compression_level argument of arrow::write_parquet().
Defaults to NULL.

Value

Object of class "tar_resources_parquet", to be supplied to the parquet argument of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

tar_resources_qs 171

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources(), tar_resources_aws(), tar_resources_clustermq(), tar_resources_crew(),
tar_resources_custom_format(), tar_resources_feather(), tar_resources_fst(), tar_resources_future(),
tar_resources_gcp(), tar_resources_network(), tar_resources_qs(), tar_resources_repository_cas(),
tar_resources_url()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
format = "parquet",
resources = tar_resources(
parquet = tar_resources_parquet(compression = "lz4")

)
)

tar_resources_qs Target resources: qs storage formats

Description

Create the qs argument of tar_resources() to specify optional settings for big data storage for-
mats powered by the qs R package. See the format argument of tar_target() for details.

Usage

tar_resources_qs(
compress_level = targets::tar_option_get("resources")qscompress_level,
shuffle = targets::tar_option_get("resources")qsshuffle,
nthreads = targets::tar_option_get("resources")qsnthreads,
preset = NULL

)

172 tar_resources_qs

Arguments

compress_level Positive integer, compress_level argument of qs2::qs_save() to control the
compression level.

shuffle TRUE to use byte shuffling in qs2::qs_save() to improve compression at the
cost of some computation time, FALSE to forgo byte shuffling.

nthreads Positive integer, number of threads to use for functions in the qs2 package to
save and read the data.

preset Deprecated in targets version 1.8.0.9014 (2024-11-11) and not used.

Value

Object of class "tar_resources_qs", to be supplied to the qs argument of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources(), tar_resources_aws(), tar_resources_clustermq(), tar_resources_crew(),
tar_resources_custom_format(), tar_resources_feather(), tar_resources_fst(), tar_resources_future(),
tar_resources_gcp(), tar_resources_network(), tar_resources_parquet(), tar_resources_repository_cas(),
tar_resources_url()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name,
command(),
format = "qs",
resources = tar_resources(
qs = tar_resources_qs(preset = "fast")

)
)

tar_resources_repository_cas 173

tar_resources_repository_cas

Target resources for custom storage formats

Description

Create the repository_cas argument of tar_resources() to specify optional target settings for
custom storage formats.

Usage

tar_resources_repository_cas(
envvars = targets::tar_option_get("resources")$repository_cas$envvars

)

Arguments

envvars Named character vector of environment variables. These environment variables
are temporarily set just before each call to the storage methods you define in
tar_format(). Specific methods like read can retrieve values from these envi-
ronment variables using Sys.getenv(). Set envvars to NULL to omit entirely.

Details

tar_resources_repository_cas() accepts target-specific settings to customize tar_repository_cas()
storage repositories.

Value

Object of class "tar_resources_repository_cas", to be supplied to the repository_cas argu-
ment of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

174 tar_resources_url

See Also

Other resources: tar_resources(), tar_resources_aws(), tar_resources_clustermq(), tar_resources_crew(),
tar_resources_custom_format(), tar_resources_feather(), tar_resources_fst(), tar_resources_future(),
tar_resources_gcp(), tar_resources_network(), tar_resources_parquet(), tar_resources_qs(),
tar_resources_url()

Examples

Somewhere in you target script file (usually _targets.R):
tar_target(

name = target_name,
command = data.frame(x = 1),
repository = tar_repository_cas(
upload = function(key, path) {

if (dir.exists(path)) {
stop("This CAS repository does not support directory outputs.")

}
if (!file.exists("cas")) {

dir.create("cas", recursive = TRUE)
}
file.copy(path, file.path("cas", key))

},
download = function(key, path) {

file.copy(file.path("cas", key), path)
},
exists = function(key) {

file.exists(file.path("cas", key))
}

),
resources = tar_resources(

repository_cas = tar_resources_repository_cas(
envvars = c(AUTHENTICATION_CREDENTIALS = "...")

)
)

)

tar_resources_url Target resources: URL storage formats

Description

Create the url argument of tar_resources() to specify optional settings for URL storage formats.
See the format argument of tar_target() for details.

Usage

tar_resources_url(
handle = targets::tar_option_get("resources")urlhandle,
max_tries = targets::tar_option_get("resources")urlmax_tries,

tar_resources_url 175

seconds_interval = targets::tar_option_get("resources")urlseconds_interval,
seconds_timeout = targets::tar_option_get("resources")urlseconds_interval

)

Arguments

handle Object returned by curl::new_handle or NULL. Defaults to NULL.

max_tries Positive integer of length 1, maximum number of tries to access a URL.
seconds_interval

Nonnegative numeric of length 1, number of seconds to wait between individual
retries while attempting to connect to the URL. Use tar_resources_network()
instead.

seconds_timeout

Nonnegative numeric of length 1, number of seconds to wait before timing out
while trying to connect to the URL. Use tar_resources_network() instead.

Value

Object of class "tar_resources_url", to be supplied to the url argument of tar_resources().

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to
supply non-default settings of various optional backends for data storage and high-performance
computing. The tar_resources() function is a helper to supply those settings in the correct man-
ner.

In targets version 0.12.2 and above, resources are inherited one-by-one in nested fashion from
tar_option_get("resources"). For example, suppose you set tar_option_set(resources =
tar_resources(aws = my_aws)), where my_aws equals tar_resources_aws(bucket = "x", prefix
= "y"). Then, tar_target(data, get_data() will have bucket "x" and prefix "y". In addition,
if new_resources equals tar_resources(aws = tar_resources_aws(bucket = "z"))), then
tar_target(data, get_data(), resources = new_resources) will use the new bucket "z", but
it will still use the prefix "y" supplied through tar_option_set(). (In targets 0.12.1 and below,
options like prefix do not carry over from tar_option_set() if you supply non-default resources
to tar_target().)

See Also

Other resources: tar_resources(), tar_resources_aws(), tar_resources_clustermq(), tar_resources_crew(),
tar_resources_custom_format(), tar_resources_feather(), tar_resources_fst(), tar_resources_future(),
tar_resources_gcp(), tar_resources_network(), tar_resources_parquet(), tar_resources_qs(),
tar_resources_repository_cas()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
Somewhere in you target script file (usually _targets.R):
tar_target(

name,

176 tar_script

command(),
format = "url",
resources = tar_resources(

url = tar_resources_url(handle = curl::new_handle())
)

)
}

tar_script Write a target script file.

Description

The tar_script() function is a convenient way to create the required target script file (default:
_targets.R) in the current working directory. It always overwrites the existing target script, and it
requires you to be in the working directory where you intend to write the file, so be careful. See the
"Target script" section for details.

Usage

tar_script(
code = NULL,
library_targets = TRUE,
ask = NULL,
script = targets::tar_config_get("script")

)

Arguments

code R code to write to the target script file. If NULL, an example target script file is
written instead.

library_targets

logical, whether to write a library(targets) line at the top of the target script
file automatically (recommended). If TRUE, you do not need to explicitly put
library(targets) in code.

ask Logical, whether to ask before writing if the target script file already exists. If
NULL, defaults to Sys.getenv("TAR_ASK"). (Set to "true" or "false" with
Sys.setenv()). If ask and the TAR_ASK environment variable are both indeter-
minate, defaults to interactive().

script Character of length 1, where to write the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R.

Value

NULL (invisibly).

tar_seed_create 177

Target script file

Every targets project requires a target script file. The target script file is usually a file called
_targets.R Functions tar_make() and friends look for the target script and run it to set up the
pipeline just prior to the main task. Every target script file should run the following steps in the
order below:

1. Package: load the targets package. This step is automatically inserted at the top of the target
script file produced by tar_script() if library_targets is TRUE, so you do not need to
explicitly include it in code.

2. Globals: load custom functions and global objects into memory. Usually, this section is a
bunch of calls to source() that run scripts defining user-defined functions. These functions
support the R commands of the targets.

3. Options: call tar_option_set() to set defaults for targets-specific settings such as the names
of required packages. Even if you have no specific options to set, it is still recommended to
call tar_option_set() in order to register the proper environment.

4. Targets: define one or more target objects using tar_target().

5. Pipeline: call list() to bring the targets from (3) together in a pipeline object. Every target
script file must return a pipeline object, which usually means ending with a call to list(). In
practice, (3) and (4) can be combined together in the same function call.

See Also

Other scripts: tar_edit(), tar_github_actions(), tar_helper(), tar_renv()

Examples

tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script() # Writes an example target script file.
Writes a user-defined target script:
tar_script({

library(targets)
library(tarchetypes)
x <- tar_target(x, 1 + 1)
tar_option_set()
list(x)

}, ask = FALSE)
writeLines(readLines("_targets.R"))
})

tar_seed_create Create a seed for a target.

Description

Create a seed for a target.

178 tar_seed_create

Usage

tar_seed_create(name, global_seed = NULL)

Arguments

name Character of length 1, target name.

global_seed Integer of length 1, the overarching global pipeline seed which governs the seeds
of all the targets. Set to NULL to default to tar_option_get("seed"). Set to
NA to disable seed setting in targets and make tar_seed_create() return
NA_integer_.

Value

Integer of length 1, the target seed.

Seeds

A target’s random number generator seed is a deterministic function of its name and the global
pipeline seed from tar_option_get("seed"). Consequently,

1. Each target runs with a reproducible seed so that
different runs of the same pipeline in the same computing
environment produce identical results.

2. No two targets in the same pipeline share the same seed.
Even dynamic branches have different names and thus different seeds.

You can retrieve the seed of a completed target with tar_meta(your_target, seed) and run
tar_seed_set() on the result to locally recreate the target’s initial RNG state. tar_workspace()
does this automatically as part of recovering a workspace.

RNG overlap

In theory, there is a risk that the pseudo-random number generator streams of different targets will
overlap and produce statistically correlated results. (For a discussion of the motivating problem, see
the Section 6: "Random-number generation" in the parallel package vignette: vignette(topic
= "parallel", package = "parallel").) However, this risk is extremely small in practice, as
shown by L’Ecuyer et al. (2017) doi:10.1016/j.matcom.2016.05.005 under "A single RNG with
a ’random’ seed for each stream" (Section 4: under "How to produce parallel streams and sub-
streams"). targets and tarchetypes take the approach discussed in the aforementioned section
of the paper using the secretbase package by Charlie Gao (2024) doi:10.5281/zenodo.10553140.
To generate the 32-bit integer seed argument of set.seed() for each target, secretbase gener-
ates a cryptographic hash using the SHAKE256 extendable output function (XOF). secretbase
uses algorithms from the Mbed TLS C library.

References

• Gao C (2024). secretbase: Cryptographic Hash and Extendable-Output Functions. R pack-
age version 0.1.0, doi:10.5281/zenodo.10553140.

https://doi.org/10.1016/j.matcom.2016.05.005
https://doi.org/10.5281/zenodo.10553140
https://doi.org/10.5281/zenodo.10553140

tar_seed_get 179

• Pierre L’Ecuyer, David Munger, Boris Oreshkin, and Richard Simard (2017). Random num-
bers for parallel computers: Requirements and methods, with emphasis on GPUs. Mathemat-
ics and Computers in Simulation, 135, 3-17. doi:10.1016/j.matcom.2016.05.005.

See Also

Other pseudo-random number generation: tar_seed_get(), tar_seed_set()

tar_seed_get Get the random number generator seed of the target currently running.

Description

Get the random number generator seed of the target currently running.

Usage

tar_seed_get(default = 1L)

Arguments

default Integer, value to return if tar_seed_get() is called on its own outside a targets
pipeline. Having a default lets users run things without tar_make(), which
helps peel back layers of code and troubleshoot bugs.

Value

Integer of length 1. If invoked inside a targets pipeline, the return value is the seed of the target
currently running, which is a deterministic function of the target name. Otherwise, the return value
is default.

Seeds

A target’s random number generator seed is a deterministic function of its name and the global
pipeline seed from tar_option_get("seed"). Consequently,

1. Each target runs with a reproducible seed so that
different runs of the same pipeline in the same computing
environment produce identical results.

2. No two targets in the same pipeline share the same seed.
Even dynamic branches have different names and thus different seeds.

You can retrieve the seed of a completed target with tar_meta(your_target, seed) and run
tar_seed_set() on the result to locally recreate the target’s initial RNG state. tar_workspace()
does this automatically as part of recovering a workspace.

https://doi.org/10.1016/j.matcom.2016.05.005

180 tar_seed_set

RNG overlap

In theory, there is a risk that the pseudo-random number generator streams of different targets will
overlap and produce statistically correlated results. (For a discussion of the motivating problem, see
the Section 6: "Random-number generation" in the parallel package vignette: vignette(topic
= "parallel", package = "parallel").) However, this risk is extremely small in practice, as
shown by L’Ecuyer et al. (2017) doi:10.1016/j.matcom.2016.05.005 under "A single RNG with
a ’random’ seed for each stream" (Section 4: under "How to produce parallel streams and sub-
streams"). targets and tarchetypes take the approach discussed in the aforementioned section
of the paper using the secretbase package by Charlie Gao (2024) doi:10.5281/zenodo.10553140.
To generate the 32-bit integer seed argument of set.seed() for each target, secretbase gener-
ates a cryptographic hash using the SHAKE256 extendable output function (XOF). secretbase
uses algorithms from the Mbed TLS C library.

References

• Gao C (2024). secretbase: Cryptographic Hash and Extendable-Output Functions. R pack-
age version 0.1.0, doi:10.5281/zenodo.10553140.

• Pierre L’Ecuyer, David Munger, Boris Oreshkin, and Richard Simard (2017). Random num-
bers for parallel computers: Requirements and methods, with emphasis on GPUs. Mathemat-
ics and Computers in Simulation, 135, 3-17. doi:10.1016/j.matcom.2016.05.005.

See Also

Other pseudo-random number generation: tar_seed_create(), tar_seed_set()

Examples

tar_seed_get()
tar_seed_get(default = 123L)
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script(tar_target(returns_seed, tar_seed_get()), ask = FALSE)
tar_make()
tar_read(returns_seed)
})
}

tar_seed_set Set a seed to run a target.

Description

targets generates its own target-specific seeds using tar_seed_create(). Use tar_seed_set()
to set one of these seeds in R.

Usage

tar_seed_set(seed)

https://doi.org/10.1016/j.matcom.2016.05.005
https://doi.org/10.5281/zenodo.10553140
https://doi.org/10.5281/zenodo.10553140
https://doi.org/10.1016/j.matcom.2016.05.005

tar_seed_set 181

Arguments

seed Integer of length 1, value of the seed to set with set.seed().

Details

tar_seed_set() gives the user-supplied seed to set.seed() and sets arguments kind = "default",
normal.kind = "default", and sample.kind = "default".

Value

NULL (invisibly).

Seeds

A target’s random number generator seed is a deterministic function of its name and the global
pipeline seed from tar_option_get("seed"). Consequently,

1. Each target runs with a reproducible seed so that
different runs of the same pipeline in the same computing
environment produce identical results.

2. No two targets in the same pipeline share the same seed.
Even dynamic branches have different names and thus different seeds.

You can retrieve the seed of a completed target with tar_meta(your_target, seed) and run
tar_seed_set() on the result to locally recreate the target’s initial RNG state. tar_workspace()
does this automatically as part of recovering a workspace.

RNG overlap

In theory, there is a risk that the pseudo-random number generator streams of different targets will
overlap and produce statistically correlated results. (For a discussion of the motivating problem, see
the Section 6: "Random-number generation" in the parallel package vignette: vignette(topic
= "parallel", package = "parallel").) However, this risk is extremely small in practice, as
shown by L’Ecuyer et al. (2017) doi:10.1016/j.matcom.2016.05.005 under "A single RNG with
a ’random’ seed for each stream" (Section 4: under "How to produce parallel streams and sub-
streams"). targets and tarchetypes take the approach discussed in the aforementioned section
of the paper using the secretbase package by Charlie Gao (2024) doi:10.5281/zenodo.10553140.
To generate the 32-bit integer seed argument of set.seed() for each target, secretbase gener-
ates a cryptographic hash using the SHAKE256 extendable output function (XOF). secretbase
uses algorithms from the Mbed TLS C library.

References

• Gao C (2024). secretbase: Cryptographic Hash and Extendable-Output Functions. R pack-
age version 0.1.0, doi:10.5281/zenodo.10553140.

• Pierre L’Ecuyer, David Munger, Boris Oreshkin, and Richard Simard (2017). Random num-
bers for parallel computers: Requirements and methods, with emphasis on GPUs. Mathemat-
ics and Computers in Simulation, 135, 3-17. doi:10.1016/j.matcom.2016.05.005.

https://doi.org/10.1016/j.matcom.2016.05.005
https://doi.org/10.5281/zenodo.10553140
https://doi.org/10.5281/zenodo.10553140
https://doi.org/10.1016/j.matcom.2016.05.005

182 tar_sitrep

See Also

Other pseudo-random number generation: tar_seed_create(), tar_seed_get()

Examples

seed <- tar_seed_create("target_name")
seed
sample(10)
tar_seed_set(seed)
sample(10)
tar_seed_set(seed)
sample(10)

tar_sitrep Show the cue-by-cue status of each target.

Description

For each target, report which cues are activated. Except for the never cue, the target will rerun
in tar_make() if any cue is activated. The target is suppressed if the never cue is TRUE. See
tar_cue() for details.

Usage

tar_sitrep(
names = NULL,
fields = NULL,
shortcut = targets::tar_config_get("shortcut"),
reporter = targets::tar_config_get("reporter_outdated"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function, reporter),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

names Optional, names of the targets. If supplied, tar_sitrep() only returns metadata
on these targets. The object supplied to names should be NULL or a tidyselect
expression like any_of() or starts_with() from tidyselect itself, or tar_described_as()
to select target names based on their descriptions.

fields Optional, names of columns/fields to select. If supplied, tar_sitrep() only
returns the selected metadata columns. You can supply symbols or tidyselect
helpers like any_of() and starts_with(). The name column is always in-
cluded first no matter what you select. Choices:

• name: name of the target or global object.

tar_sitrep 183

• record: Whether the record cue is activated: TRUE if the target is not in the
metadata (tar_meta()), or if the target errored during the last tar_make(),
or if the class of the target changed.

• always: Whether mode in tar_cue() is "always". If TRUE, tar_make()
always runs the target.

• never: Whether mode in tar_cue() is "never". If TRUE, tar_make() will
only run if the record cue activates.

• command: Whether the target’s command changed since last time. Al-
ways TRUE if the record cue is activated. Otherwise, always FALSE if the
command cue is suppressed.

• depend: Whether the data/output of at least one of the target’s dependencies
changed since last time. Dependencies are targets, functions, and global
objects directly upstream. Call tar_outdated(targets_only = FALSE)
or tar_visnetwork(targets_only = FALSE) to see exactly which depen-
dencies are outdated. Always NA if the record cue is activated. Otherwise,
always FALSE if the depend cue is suppressed.

• format: Whether the storage format of the target is different from last time.
Always NA if the record cue is activated. Otherwise, always FALSE if the
format cue is suppressed.

• repository: Whether the storage repository of the target is different from
last time. Always NA if the record cue is activated. Otherwise, always
FALSE if the format cue is suppressed.

• iteration: Whether the iteration mode of the target is different from last
time. Always NA if the record cue is activated. Otherwise, always FALSE if
the iteration cue is suppressed.

• file: Whether the file(s) with the target’s return value are missing or dif-
ferent from last time. Always NA if the record cue is activated. Otherwise,
always FALSE if the file cue is suppressed.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as
the dependency graph goes. If TRUE, then the function only checks the targets in
names and uses stored metadata for information about upstream dependencies as
needed. shortcut = TRUE increases speed if there are a lot of up-to-date targets,
but it assumes all the dependencies are up to date, so please use with caution.
Use with caution. shortcut = TRUE only works if you set names.

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets are checked. Choices:

• "silent": print nothing.
• "forecast": print running totals of the checked and outdated targets found

so far.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

184 tar_sitrep

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

Caveats:

• tar_cue() allows you to change/suppress cues, so the return value will depend on the settings
you supply to tar_cue().

• If a pattern tries to branches over a target that does not exist in storage, then the branches are
omitted from the output.

• tar_sitrep() is myopic. It only considers what happens to the immediate target and its
immediate upstream dependencies, and it makes no attempt to propagate invalidation down-
stream.

Value

A data frame with one row per target/object and one column per cue. Each element is a logical
to indicate whether the cue is activated for the target. See the field argument in this help file for
details.

See Also

Other inspect: tar_deps(), tar_manifest(), tar_network(), tar_outdated(), tar_validate()

tar_skipped 185

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_sitrep()
tar_meta(starts_with("y_")) # see also any_of()
})
}

tar_skipped List skipped targets.

Description

List targets whose progress is "skipped".

Usage

tar_skipped(names = NULL, store = targets::tar_config_get("store"))

Arguments

names Optional, names of the targets. If supplied, the output is restricted to the selected
targets. The object supplied to names should be NULL or a tidyselect expres-
sion like any_of() or starts_with() from tidyselect itself, or tar_described_as()
to select target names based on their descriptions.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A character vector of skipped targets.

See Also

Other progress: tar_canceled(), tar_completed(), tar_dispatched(), tar_errored(), tar_poll(),
tar_progress(), tar_progress_branches(), tar_progress_summary(), tar_watch(), tar_watch_server(),
tar_watch_ui()

186 tar_source

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

list(
tar_target(x, seq_len(2)),
tar_target(y, 2 * x, pattern = map(x))

)
}, ask = FALSE)
tar_make()
tar_skipped()
tar_skipped(starts_with("y_")) # see also any_of()
})
}

tar_source Run R scripts.

Description

Run all the R scripts in a directory in the environment specified.

Usage

tar_source(
files = "R",
envir = targets::tar_option_get("envir"),
change_directory = FALSE

)

Arguments

files Character vector of file and directory paths to look for R scripts to run. Paths
must either be absolute paths or must be relative to the current working directory
just before the function call.

envir Environment to run the scripts. Defaults to tar_option_get("envir"), the
environment of the pipeline.

change_directory

Logical, whether to temporarily change the working directory to the directory
of each R script before running it.

Details

tar_source() is a convenient way to load R scripts in _targets.R to make custom functions
available to the pipeline. tar_source() recursively looks for files ending in .R or .r, and it runs
each with eval(parse(text = readLines(script_file, warn = FALSE)), envir).

tar_target 187

Value

NULL (invisibly)

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other utilities: tar_active(), tar_backoff(), tar_call(), tar_cancel(), tar_definition(),
tar_described_as(), tar_envir(), tar_format_get(), tar_group(), tar_name(), tar_path(),
tar_path_script(), tar_path_script_support(), tar_path_store(), tar_path_target(),
tar_store(), tar_unblock_process()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
Running in tar_dir(), these files are written in tempdir().
dir.create("R")
writeLines("f <- function(x) x + 1", file.path("R", "functions.R"))
tar_script({

tar_source()
list(tar_target(x, f(1)))

})
tar_make()
tar_read(x) # 2
})
}

tar_target Declare a target.

Description

A target is a single step of computation in a pipeline. It runs an R command and returns a value.
This value gets treated as an R object that can be used by the commands of targets downstream.
Targets that are already up to date are skipped. See the user manual for more details.

tar_target() defines a target using non-standard evaluation. The name argument is an uneval-
uated symbol, and the command and pattern arguments are unevaluated expressions. Example:
tar_target(name = data, command = get_data()).

tar_target_raw() defines a target with standard evaluation. The name argument is a character
string, and the command and pattern arguments are evaluated expressions. Example: tar_target_raw(name

188 tar_target

= "data", command = quote(get_data())). tar_target_raw() also has extra arguments deps
and string for advanced customization.

Usage

tar_target(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = isTRUE(targets::tar_option_get("garbage_collection")),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

tar_target_raw(
name,
command,
pattern = NULL,
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
deps = NULL,
string = NULL,
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = isTRUE(targets::tar_option_get("garbage_collection")),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

tar_target 189

Arguments

name Symbol, name of the target. In tar_target(), name is an unevaluated symbol,
e.g. tar_target(name = data). In tar_target_raw(), name is a character
string, e.g. tar_target_raw(name = "data").
A target name must be a valid name for a symbol in R, and it must not start with
a dot. Subsequent targets can refer to this name symbolically to induce a depen-
dency relationship: e.g. tar_target(downstream_target, f(upstream_target))
is a target named downstream_target which depends on a target upstream_target
and a function f(). In addition, a target’s name determines its random number
generator seed. In this way, each target runs with a reproducible seed so some-
one else running the same pipeline should get the same results, and no two
targets in the same pipeline share the same seed. (Even dynamic branches have
different names and thus different seeds.) You can recover the seed of a com-
pleted target with tar_meta(your_target, seed) and run tar_seed_set()
on the result to locally recreate the target’s initial RNG state.

command R code to run the target. In tar_target(), command is an unevaluated expres-
sion, e.g. tar_target(command = data). In tar_target_raw(), command is
an evaluated expression, e.g. tar_target_raw(command = quote(data)).

pattern Code to define a dynamic branching branching for a target. In tar_target(),
pattern is an unevaluated expression, e.g. tar_target(pattern = map(data)).
In tar_target_raw(), command is an evaluated expression, e.g. tar_target_raw(pattern
= quote(map(data))).
To demonstrate dynamic branching patterns, suppose we have a pipeline with
numeric vector targets x and y. Then, tar_target(z, x + y, pattern = map(x,
y)) implicitly defines branches of z that each compute x[1] + y[1], x[2] +
y[2], and so on. See the user manual for details.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

https://books.ropensci.org/targets/data.html

190 tar_target

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

• A character string from tar_repository_cas() for content-addressable
storage.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a non-dynamic data frame. For iteration = "group", the target must not
by dynamic (the pattern argument of tar_target() must be left NULL).
The target’s return value must be a data frame with a special tar_group
column of consecutive integers from 1 through the number of groups. Each
integer designates a group, and a branch is created for each collection of
rows in a group. See the tar_group() function to see how you can create
the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "null": The errored target continues and returns NULL. The data hash is

deliberately wrong so the target is not up to date for the next run of the
pipeline. In addition, as of version 1.8.0.9011, a value of NULL is given to
upstream dependencies with error = "null" if loading fails.

• "abridge": any currently running targets keep running, but no new targets
launch after that.

• "trim": all currently running targets stay running. A queued target is al-
lowed to start if:
1. It is not downstream of the error, and
2. It is not a sibling branch from the same tar_target() call (if the error

happened in a dynamic branch).
The idea is to avoid starting any new work that the immediate error impacts.
error = "trim" is just like error = "abridge", but it allows potentially
healthy regions of the dependency graph to begin running. (Visit https://
books.ropensci.org/targets/debugging.html to learn how to debug
targets using saved workspaces.)

memory Character of length 1, memory strategy. Possible values:

• "auto": new in targets version 1.8.0.9011, memory = "auto" is equiva-
lent to memory = "transient" for dynamic branching (a non-null pattern
argument) and memory = "persistent" for targets that do not use dynamic
branching.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_target 191

• "persistent": the target stays in memory until the end of the pipeline
(unless storage is "worker", in which case targets unloads the value
from memory right after storing it in order to avoid sending copious data
over a network).

• "transient": the target gets unloaded after every new target completes.
Either way, the target gets automatically loaded into memory whenever an-
other target needs the value.

For cloud-based dynamic files (e.g. format = "file" with repository = "aws"),
the memory option applies to the temporary local copy of the file: "persistent"
means it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical: TRUE to run base::gc() just before the target runs, FALSE to omit
garbage collection. In the case of high-performance computing, gc() runs both
locally and on the parallel worker. All this garbage collection is skipped if the
actual target is skipped in the pipeline. Non-logical values of garbage_collection
are converted to TRUE or FALSE using isTRUE(). In other words, non-logical val-
ues are converted FALSE. For example, garbage_collection = 2 is equivalent
to garbage_collection = FALSE.

deployment Character of length 1. If deployment is "main", then the target will run on the
central controlling R process. Otherwise, if deployment is "worker" and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character string to control when the output of the target is saved to storage.
Only relevant when using targets with parallel workers (https://books.
ropensci.org/targets/crew.html). Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": targets makes no attempt to save the result of the target to storage

in the location where targets expects it to be. Saving to storage is the
responsibility of the user. Use with caution.

retrieval Character string to control when the current target loads its dependencies into
memory before running. (Here, a "dependency" is another target upstream that
the current one depends on.) Only relevant when using targets with parallel
workers (https://books.ropensci.org/targets/crew.html). Must be one
of the following values:

https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html

192 tar_target

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

• "worker": the worker loads the target’s dependencies.
• "none": targets makes no attempt to load its dependencies. With retrieval
= "none", loading dependencies is the responsibility of the user. Use with
caution.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make(). For example, tar_manifest(names =
tar_described_as(starts_with("survival model"))) lists all the targets
whose descriptions start with the character string "survival model".

deps Optional character vector of the adjacent upstream dependencies of the target,
including targets and global objects. If NULL, dependencies are resolved au-
tomatically as usual. The deps argument is only for developers of extension
packages such as tarchetypes, not for end users, and it should almost never
be used at all. In scenarios that at first appear to requires deps, there is almost
always a simpler and more robust workaround that avoids setting deps.

string Optional string representation of the command. Internally, the string gets hashed
to check if the command changed since last run, which helps targets decide
whether the target is up to date. External interfaces can take control of string
to ignore changes in certain parts of the command. If NULL, the strings is just
deparsed from command (default).

Value

A target object. Users should not modify these directly, just feed them to list() in your target
script file (default: _targets.R).

Target objects

Functions like tar_target() produce target objects, special objects with specialized sets of S3
classes. Target objects represent skippable steps of the analysis pipeline as described at https:
//books.ropensci.org/targets/. Please read the walkthrough at https://books.ropensci.
org/targets/walkthrough.html to understand the role of target objects in analysis pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

Storage formats

targets has several built-in storage formats to control how return values are saved and loaded from
disk:

• "rds": Default, uses saveRDS() and readRDS(). Should work for most objects, but slow.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_target 193

• "auto": either "file" or "qs", depending on the return value of the target. If the return value
is a character vector of existing files (and/or directories), then the format becomes "file"
before tar_make() saves the target. Otherwise, the format becomes "qs".

• "qs": Uses qs2::qs_save() and qs2::qs_read(). Should work for most objects, much
faster than "rds". Optionally configure settings through tar_resources() and tar_resources_qs().
Prior to targets version 1.8.0.9014, format = "qs" used the qs package. qs has since been
superseded in favor of qs2, and so later versions of targets use qs2 to save new data. To
read existing data, targets first attempts qs2::qs_read(), and then if that fails, it falls back
on qs::qread().

• "feather": Uses arrow::write_feather() and arrow::read_feather() (version 2.0).
Much faster than "rds", but the value must be a data frame. Optionally set compression and
compression_level in arrow::write_feather() through tar_resources() and tar_resources_feather().
Requires the arrow package (not installed by default).

• "parquet": Uses arrow::write_parquet() and arrow::read_parquet() (version 2.0).
Much faster than "rds", but the value must be a data frame. Optionally set compression and
compression_level in arrow::write_parquet() through tar_resources() and tar_resources_parquet().
Requires the arrow package (not installed by default).

• "fst": Uses fst::write_fst() and fst::read_fst(). Much faster than "rds", but the
value must be a data frame. Optionally set the compression level for fst::write_fst()
through tar_resources() and tar_resources_fst(). Requires the fst package (not in-
stalled by default).

• "fst_dt": Same as "fst", but the value is a data.table. Deep copies are made as appro-
priate in order to protect against the global effects of in-place modification. Optionally set the
compression level the same way as for "fst".

• "fst_tbl": Same as "fst", but the value is a tibble. Optionally set the compression level
the same way as for "fst".

• "keras": superseded by tar_format() and incompatible with error = "null" (in tar_target()
or tar_option_set()). Uses keras::save_model_hdf5() and keras::load_model_hdf5().
The value must be a Keras model. Requires the keras package (not installed by default).

• "torch": superseded by tar_format() and incompatible with error = "null" (in tar_target()
or tar_option_set()). Uses torch::torch_save() and torch::torch_load(). The value
must be an object from the torch package such as a tensor or neural network module. Re-
quires the torch package (not installed by default).

• "file": A dynamic file. To use this format, the target needs to manually identify or save
some data and return a character vector of paths to the data (must be a single file path if
repository is not "local"). (These paths must be existing files and nonempty directories.)
Then, targets automatically checks those files and cues the appropriate run/skip decisions if
those files are out of date. Those paths must point to files or directories, and they must not
contain characters | or *. All the files and directories you return must actually exist, or else
targets will throw an error. (And if storage is "worker", targets will first stall out trying
to wait for the file to arrive over a network file system.) If the target does not create any files,
the return value should be character(0).
If repository is not "local" and format is "file", then the character vector returned by
the target must be of length 1 and point to a single file. (Directories and vectors of multiple
file paths are not supported for dynamic files on the cloud.) That output file is uploaded to the

194 tar_target

cloud and tracked for changes where it exists in the cloud. The local file is deleted after the
target runs.

• "url": A dynamic input URL. For this storage format, repository is implicitly "local",
URL format is like format = "file" except the return value of the target is a URL that already
exists and serves as input data for downstream targets. Optionally supply a custom curl
handle through tar_resources() and tar_resources_url(). in new_handle(), nobody
= TRUE is important because it ensures targets just downloads the metadata instead of the
entire data file when it checks time stamps and hashes. The data file at the URL needs to have
an ETag or a Last-Modified time stamp, or else the target will throw an error because it cannot
track the data. Also, use extreme caution when trying to use format = "url" to track uploads.
You must be absolutely certain the ETag and Last-Modified time stamp are fully updated and
available by the time the target’s command finishes running. targets makes no attempt to
wait for the web server.

• A custom format can be supplied with tar_format(). For this choice, it is the user’s respon-
sibility to provide methods for (un)serialization and (un)marshaling the return value of the
target.

• The formats starting with "aws_" are deprecated as of 2022-03-13 (targets version > 0.10.0).
For cloud storage integration, use the repository argument instead.

Formats "rds", "file", and "url" are general-purpose formats that belong in the targets package
itself. Going forward, any additional formats should be implemented with tar_format() in third-
party packages like tarchetypes and geotargets (for example: tarchetypes::tar_format_nanoparquet()).
Formats "qs", "fst", etc. are legacy formats from before the existence of tar_format(), and they
will continue to remain in targets without deprecation.

See Also

Other targets: tar_cue()

Examples

Defining targets does not run them.
data <- tar_target(target_name, get_data(), packages = "tidyverse")
analysis <- tar_target(analysis, analyze(x), pattern = map(x))
In a pipeline:
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(
tar_target(name = x, command = 1 + 1),
tar_target_raw(name = "y", command = quote(x + y))

)
})
tar_make()
tar_read(x)
})
Tidy evaluation
tar_option_set(envir = environment())

tar_test 195

n_rows <- 30L
data <- tar_target(target_name, get_data(!!n_rows))
print(data)
Disable tidy evaluation:
data <- tar_target(target_name, get_data(!!n_rows), tidy_eval = FALSE)
print(data)
tar_option_reset()
}

tar_test Test code in a temporary directory.

Description

Runs a test_that() unit test inside a temporary directory to avoid writing to the user’s file space.
This helps ensure compliance with CRAN policies. Also isolates tar_option_set() options and
environment variables specific to targets and skips the test on Solaris. Useful for writing tests for
targetopia packages (extensions to targets tailored to specific use cases).

Usage

tar_test(label, code)

Arguments

label Character of length 1, label for the test.

code User-defined code for the test.

Value

NULL (invisibly).

See Also

Other utilities to extend targets: tar_assert, tar_condition, tar_language

Examples

tar_test("example test", {
testing_variable_cafecfcb <- "only defined inside tar_test()"
file.create("only_exists_in_tar_test")

})
exists("testing_variable_cafecfcb")
file.exists("only_exists_in_tar_test")

https://wlandau.github.io/targetopia/

196 tar_timestamp

tar_timestamp Get the timestamp(s) of a target.

Description

Get the timestamp associated with a target’s last successful run. tar_timestamp() expects the
name argument to be an unevaluated symbol, whereas tar_timestamp_raw() expects name to be a
character string.

Usage

tar_timestamp(
name = NULL,
format = NULL,
tz = NULL,
parse = NULL,
store = targets::tar_config_get("store")

)

tar_timestamp_raw(
name = NULL,
format = NULL,
tz = NULL,
parse = NULL,
store = targets::tar_config_get("store")

)

Arguments

name Name of the target. If NULL (default) then tar_timestamp() will attempt to
return the timestamp of the target currently running. Must be called inside a
target’s command or a supporting function in order to work.
tar_timestamp() expects the name argument to be an unevaluated symbol,
whereas tar_timestamp_raw() expects name to be a character string.

format Deprecated in targets version 0.6.0 (2021-07-21).

tz Deprecated in targets version 0.6.0 (2021-07-21).

parse Deprecated in targets version 0.6.0 (2021-07-21).

store Character string, directory path to the data store of the pipeline.

Details

tar_timestamp() checks the metadata in _targets/meta/meta, not the actual returned data of the
target. The timestamp depends on the storage format of the target. If storage is local, e.g. formats
like "rds" and "file", then the time stamp is the latest modification time of the target data files
at the time the target last successfully ran. For non-local storage as with repository = "aws" and
format = "url", targets chooses instead to simply record the time the target last successfully ran.

tar_toggle 197

Value

If the target is not recorded in the metadata or cannot be parsed correctly, then tar_timestamp()
returns a POSIXct object at 1970-01-01 UTC.

See Also

Other time: tar_newer(), tar_older()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
list(tar_target(x, 1))

}, ask = FALSE)
tar_make()
Get the timestamp.
tar_timestamp(x)
We can use the timestamp to cancel the target
if it already ran within the last hour.
Be sure to set `cue = tar_cue(mode = "always")`
if you want the target to always check the timestamp.
tar_script({

list(
tar_target(
x,
tar_cancel((Sys.time() - tar_timestamp()) < 3600),
cue = tar_cue(mode = "always")

)
)}, ask = FALSE)
tar_make()
})
}

tar_toggle Choose code to run based on Target Markdown mode.

Description

Run one piece of code if Target Markdown mode interactive mode is turned on and another piece
of code otherwise.

Usage

tar_toggle(interactive, noninteractive)

198 tar_traceback

Arguments

interactive R code to run if Target Markdown interactive mode is activated.

noninteractive R code to run if Target Markdown interactive mode is not activated.

Details

Visit <books.ropensci.org/targets/literate-programming.html> to learn about Target Markdown and
interactive mode.

Value

If Target Markdown interactive mode is not turned on, the function returns the result of running the
code. Otherwise, the function invisibly returns NULL.

See Also

Other Target Markdown: tar_engine_knitr(), tar_interactive(), tar_noninteractive()

Examples

tar_toggle(
message("In interactive mode."),
message("Not in interactive mode.")

)

tar_traceback Get a target’s traceback

Description

Return the saved traceback of a target. Assumes the target errored out in a previous run of the
pipeline with workspaces enabled for that target. See tar_workspace() for details.

Usage

tar_traceback(
name,
envir = NULL,
packages = NULL,
source = NULL,
characters = NULL,
store = targets::tar_config_get("store")

)

tar_traceback 199

Arguments

name Symbol, name of the target whose workspace to read.

envir Deprecated in targets > 0.3.1 (2021-03-28).

packages Logical, whether to load the required packages of the target.

source Logical, whether to run the target script file (default: _targets.R) to load user-
defined global object dependencies into envir. If TRUE, then envir should ei-
ther be the global environment or inherit from the global environment.

characters Deprecated in targets 1.4.0 (2023-12-06).

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

Character vector, the traceback of a failed target if it exists.

See Also

Other debug: tar_load_globals(), tar_workspace(), tar_workspaces()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tmp <- sample(1)
tar_script({

library(targets)
library(tarchetypes)
tar_option_set(workspace_on_error = TRUE)
list(
tar_target(x, "loaded"),
tar_target(y, stop(x))

)
}, ask = FALSE)
try(tar_make())
tar_traceback(y, characters = 60)
})
}

200 tar_unscript

tar_unblock_process Unblock the pipeline process

Description

targets tries to avoid running two concurrent instances of tar_make() on the same pipeline writ-
ing to the same data store. Sometimes it generates false positives (meaning tar_make() throws
this error even though there is only one instance of the pipeline running.) If there is a false positive,
tar_unblock_process() gets the pipeline unstuck by removing the _targets/meta/process file.
This allows the next call to tar_make() to resume.

Usage

tar_unblock_process(store = targets::tar_config_get("store"))

Arguments

store Character string, path to the data store (usually "_targets").

Value

NULL (invisibly). Called for its side effects.

See Also

Other utilities: tar_active(), tar_backoff(), tar_call(), tar_cancel(), tar_definition(),
tar_described_as(), tar_envir(), tar_format_get(), tar_group(), tar_name(), tar_path(),
tar_path_script(), tar_path_script_support(), tar_path_store(), tar_path_target(),
tar_source(), tar_store()

tar_unscript Remove target script helper files.

Description

Remove target script helper files (default: _targets_r/) that were created by Target Markdown.

Usage

tar_unscript(script = targets::tar_config_get("script"))

Arguments

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

tar_unversion 201

Details

Target Markdown code chunks create R scripts in a folder called _targets_r/ in order to aid the
automatically supplied _targets.R file. Over time, the number of script files starts to build up, and
targets has no way of automatically removing helper script files that are no longer necessary. To
keep your pipeline up to date with the code chunks in the Target Markdown document(s), it is good
practice to call tar_unscript() at the beginning of your first Target Markdown document. That
way, extraneous/discarded targets are automatically removed from the pipeline when the document
starts render.

If the target script is at some alternative path, e.g. custom/script.R, the helper scripts are in
custom/script_r/. tar_unscript() works on the helper scripts as long as your project configu-
ration settings correctly identify the correct target script.

Value

NULL (invisibly).

Examples

tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_unscript()
})

tar_unversion Delete cloud object version IDs from local metadata.

Description

Delete version IDs from local metadata.

Usage

tar_unversion(
names = tidyselect::everything(),
store = targets::tar_config_get("store")

)

Arguments

names Tidyselect expression to identify the targets to drop version IDs. The object
supplied to names should be NULL or a tidyselect expression like any_of()
or starts_with() from tidyselect itself, or tar_described_as() to select
target names based on their descriptions.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

202 tar_validate

Value

NULL (invisibly).

Cloud target data versioning

Some buckets in Amazon S3 or Google Cloud Storage are "versioned", which means they track
historical versions of each data object. If you use targets with cloud storage (https://books.
ropensci.org/targets/cloud-storage.html) and versioning is turned on, then targets will
record each version of each target in its metadata.

Functions like tar_read() and tar_load() load the version recorded in the local metadata, which
may not be the same as the "current" version of the object in the bucket. Likewise, functions
tar_delete() and tar_destroy() only remove the version ID of each target as recorded in the
local metadata.

If you want to interact with the latest version of an object instead of the version ID recorded in the
local metadata, then you will need to delete the object from the metadata.

1. Make sure your local copy of the metadata is current and up to date. You may need to run
tar_meta_download() or tar_meta_sync() first.

2. Run tar_unversion() to remove the recorded version IDs of your targets in the local meta-
data.

3. With the version IDs gone from the local metadata, functions like tar_read() and tar_destroy()
will use the latest version of each target data object.

4. Optional: to back up the local metadata file with the version IDs deleted, use tar_meta_upload().

See Also

Other clean: tar_delete(), tar_destroy(), tar_invalidate(), tar_prune(), tar_prune_list()

tar_validate Validate a pipeline of targets.

Description

Inspect the pipeline for issues and throw an error or warning if a problem is detected.

Usage

tar_validate(
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

https://books.ropensci.org/targets/cloud-storage.html
https://books.ropensci.org/targets/cloud-storage.html

tar_validate 203

Arguments

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.
envir An environment, where to run the target R script (default: _targets.R) if

callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

NULL except if callr_function = callr::r_bg(), in which case a handle to the callr background
process is returned. Either way, the value is invisibly returned.

See Also

Other inspect: tar_deps(), tar_manifest(), tar_network(), tar_outdated(), tar_sitrep()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script(list(tar_target(x, 1 + 1)), ask = FALSE)
tar_validate()
})
}

204 tar_visnetwork

tar_visnetwork visNetwork dependency graph.

Description

Visualize the pipeline dependency graph with a visNetwork HTML widget.

Usage

tar_visnetwork(
targets_only = FALSE,
names = NULL,
shortcut = FALSE,
allow = NULL,
exclude = ".Random.seed",
outdated = TRUE,
label = targets::tar_config_get("label"),
label_width = targets::tar_config_get("label_width"),
level_separation = targets::tar_config_get("level_separation"),
degree_from = 1L,
degree_to = 1L,
zoom_speed = 1,
physics = FALSE,
reporter = targets::tar_config_get("reporter_outdated"),
seconds_reporter = targets::tar_config_get("seconds_reporter"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

targets_only Logical, whether to restrict the output to just targets (FALSE) or to also include
global functions and objects.

names Names of targets. The graph visualization will operate only on these targets
(and unless shortcut is TRUE, all the targets upstream as well). Selecting a
small subgraph using names could speed up the load time of the visualization.
Unlike allow, names is invoked before the graph is generated. Set to NULL
to check/run all the targets (default). Otherwise, the object supplied to names
should be a tidyselect expression like any_of() or starts_with() from
tidyselect itself, or tar_described_as() to select target names based on
their descriptions.

shortcut Logical of length 1, how to interpret the names argument. If shortcut is FALSE
(default) then the function checks all targets upstream of names as far back as

tar_visnetwork 205

the dependency graph goes. If TRUE, then the function only checks the targets in
names and uses stored metadata for information about upstream dependencies as
needed. shortcut = TRUE increases speed if there are a lot of up-to-date targets,
but it assumes all the dependencies are up to date, so please use with caution.
Also, shortcut = TRUE only works if you set names.

allow Optional, define the set of allowable vertices in the graph. Unlike names, allow
is invoked only after the graph is mostly resolved, so it will not speed up execu-
tion. Set to NULL to allow all vertices in the pipeline and environment (default).
Otherwise, you can supply symbols or tidyselect helpers like starts_with().

exclude Optional, define the set of exclude vertices from the graph. Unlike names,
exclude is invoked only after the graph is mostly resolved, so it will not speed
up execution. Set to NULL to exclude no vertices. Otherwise, you can supply
symbols or tidyselect helpers like any_of() and starts_with().

outdated Logical, whether to show colors to distinguish outdated targets from up-to-date
targets. (Global functions and objects still show these colors.) Looking for
outdated targets takes a lot of time for large pipelines with lots of branches, and
setting outdated to FALSE is a nice way to speed up the graph if you only want
to see dependency relationships and pipeline progress.

label Character vector of one or more aesthetics to add to the vertex labels. Can con-
tain "description" to show each target’s custom description, "time" to show
total runtime, "size" to show total storage size, or "branches" to show the
number of branches in each pattern. You can choose multiple aesthetics at once,
e.g. label = c("description", "time"). Only the description is enabled by
default.

label_width Positive numeric of length 1, maximum width (in number of characters) of the
node labels.

level_separation

Numeric of length 1, levelSeparation argument of visNetwork::visHierarchicalLayout().
Controls the distance between hierarchical levels. Consider changing the value
if the aspect ratio of the graph is far from 1. If level_separation is NULL, the
levelSeparation argument of visHierarchicalLayout() defaults to 150.

degree_from Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_from controls the number of edges the neighborhood
extends upstream.

degree_to Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_to controls the number of edges the neighborhood
extends downstream.

zoom_speed Positive numeric of length 1, scaling factor on the zoom speed. Above 1 zooms
faster than default, below 1 zooms lower than default.

physics Logical of length 1, whether to implement interactive physics in the graph, e.g.
edge elasticity.

reporter Character of length 1, name of the reporter to user. Controls how messages are
printed as targets are checked. Choices:

• "silent": print nothing.
• "forecast": print running totals of the checked and outdated targets found

so far.

206 tar_visnetwork

seconds_reporter

Positive numeric of length 1 with the minimum number of seconds between
times when the reporter prints progress messages to the R console.

callr_function A function from callr to start a fresh clean R process to do the work. Set to
NULL to run in the current session instead of an external process (but restart
your R session just before you do in order to clear debris out of the global
environment). callr_function needs to be NULL for interactive debugging,
e.g. tar_option_set(debug = "your_target"). However, callr_function
should not be NULL for serious reproducible work.

callr_arguments

A list of arguments to callr_function.

envir An environment, where to run the target R script (default: _targets.R) if
callr_function is NULL. Ignored if callr_function is anything other than
NULL. callr_function should only be NULL for debugging and testing pur-
poses, not for serious runs of a pipeline, etc.
The envir argument of tar_make() and related functions always overrides the
current value of tar_option_get("envir") in the current R session just before
running the target script file, so whenever you need to set an alternative envir,
you should always set it with tar_option_set() from within the target script
file. In other words, if you call tar_option_set(envir = envir1) in an inter-
active session and then tar_make(envir = envir2, callr_function = NULL),
then envir2 will be used.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

A visNetwork HTML widget object.

Dependency graph

The dependency graph of a pipeline is a directed acyclic graph (DAG) where each node indicates
a target or global object and each directed edge indicates where a downstream node depends on
an upstream node. The DAG is not always a tree, but it never contains a cycle because no target
is allowed to directly or indirectly depend on itself. The dependency graph should show a natural
progression of work from left to right. targets uses static code analysis to create the graph, so
the order of tar_target() calls in the _targets.R file does not matter. However, targets does
not support self-referential loops or other cycles. For more information on the dependency graph,
please read https://books.ropensci.org/targets/targets.html#dependencies.

https://books.ropensci.org/targets/targets.html#dependencies

tar_watch 207

Storage access

Several functions like tar_make(), tar_read(), tar_load(), tar_meta(), and tar_progress()
read or modify the local data store of the pipeline. The local data store is in flux while a pipeline is
running, and depending on how distributed computing or cloud computing is set up, not all targets
can even reach it. So please do not call these functions from inside a target as part of a running
pipeline. The only exception is literate programming target factories in the tarchetypes package
such as tar_render() and tar_quarto().

See Also

Other visualize: tar_glimpse(), tar_mermaid()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set()
list(
tar_target(y1, 1 + 1),
tar_target(y2, 1 + 1),
tar_target(z, y1 + y2, description = "sum of two other sums")

)
})
tar_visnetwork()
tar_visnetwork(allow = starts_with("y")) # see also any_of()
})
}

tar_watch Shiny app to watch the dependency graph.

Description

Launches a background process with a Shiny app that calls tar_visnetwork() every few seconds.
To embed this app in other apps, use the Shiny module in tar_watch_ui() and tar_watch_server().

Usage

tar_watch(
seconds = 10,
seconds_min = 1,
seconds_max = 60,
seconds_step = 1,
targets_only = FALSE,
exclude = ".Random.seed",

208 tar_watch

outdated = FALSE,
label = NULL,
level_separation = 150,
degree_from = 1L,
degree_to = 1L,
config = Sys.getenv("TAR_CONFIG", "_targets.yaml"),
project = Sys.getenv("TAR_PROJECT", "main"),
height = "650px",
display = "summary",
displays = c("summary", "branches", "progress", "graph", "about"),
background = TRUE,
browse = TRUE,
host = getOption("shiny.host", "127.0.0.1"),
port = getOption("shiny.port", targets::tar_random_port()),
verbose = TRUE,
supervise = TRUE,
poll_connection = TRUE,
stdout = "|",
stderr = "|",
title = "",
theme = bslib::bs_theme(),
spinner = TRUE

)

Arguments

seconds Numeric of length 1, default number of seconds between refreshes of the graph.
Can be changed in the app controls.

seconds_min Numeric of length 1, lower bound of seconds in the app controls.

seconds_max Numeric of length 1, upper bound of seconds in the app controls.

seconds_step Numeric of length 1, step size of seconds in the app controls.

targets_only Logical, whether to restrict the output to just targets (FALSE) or to also include
global functions and objects.

exclude Character vector of nodes to omit from the graph.

outdated Logical, whether to show colors to distinguish outdated targets from up-to-date
targets. (Global functions and objects still show these colors.) Looking for
outdated targets takes a lot of time for large pipelines with lots of branches, and
setting outdated to FALSE is a nice way to speed up the graph if you only want
to see dependency relationships and pipeline progress.

label Label argument to tar_visnetwork().

level_separation

Numeric of length 1, levelSeparation argument of visNetwork::visHierarchicalLayout().
Controls the distance between hierarchical levels. Consider changing the value
if the aspect ratio of the graph is far from 1. If level_separation is NULL, the
levelSeparation argument of visHierarchicalLayout() defaults to 150.

tar_watch 209

degree_from Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_from controls the number of edges the neighborhood
extends upstream.

degree_to Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_to controls the number of edges the neighborhood
extends downstream.

config Character of length 1, file path of the YAML configuration file with targets
project settings. The config argument specifies which YAML configuration file
that tar_config_get() reads from or tar_config_set() writes to in a sin-
gle function call. It does not globally change which configuration file is used
in subsequent function calls. The default file path of the YAML file is always
_targets.yaml unless you set another default path using the TAR_CONFIG envi-
ronment variable, e.g. Sys.setenv(TAR_CONFIG = "custom.yaml"). This also
has the effect of temporarily modifying the default arguments to other functions
such as tar_make() because the default arguments to those functions are con-
trolled by tar_config_get().

project Character of length 1, name of the current targets project. Thanks to the
config R package, targets YAML configuration files can store multiple sets
of configuration settings, with each set corresponding to its own project. The
project argument allows you to set or get a configuration setting for a spe-
cific project for a given call to tar_config_set() or tar_config_get(). The
default project is always called "main" unless you set another default project
using the TAR_PROJECT environment variable, e.g. Sys.setenv(tar_project
= "custom"). This also has the effect of temporarily modifying the default ar-
guments to other functions such as tar_make() because the default arguments
to those functions are controlled by tar_config_get().

height Character of length 1, height of the visNetwork widget and branches table.

display Character of length 1, which display to show first.

displays Character vector of choices for the display. Elements can be any of "graph",
"summary", "branches", or "about".

background Logical, whether to run the app in a background process so you can still use the
R console while the app is running.

browse Whether to open the app in a browser when the app is ready. Only relevant if
background is TRUE.

host Character of length 1, IPv4 address to listen on. Only relevant if background is
TRUE.

port Positive integer of length 1, TCP port to listen on. Only relevant if background
is TRUE.

verbose whether to print a spinner and informative messages. Only relevant if background
is TRUE.

supervise Whether to register the process with a supervisor. If TRUE, the supervisor will
ensure that the process is killed when the R process exits.

poll_connection

Whether to have a control connection to the process. This is used to transmit
messages from the subprocess to the main process.

210 tar_watch

stdout The name of the file the standard output of the child R process will be written
to. If the child process runs with the --slave option (the default), then the com-
mands are not echoed and will not be shown in the standard output. Also note
that you need to call print() explicitly to show the output of the command(s).
IF NULL (the default), then standard output is not returned, but it is recorded and
included in the error object if an error happens.

stderr The name of the file the standard error of the child R process will be written to.
In particular message() sends output to the standard error. If nothing was sent
to the standard error, then this file will be empty. This argument can be the same
file as stdout, in which case they will be correctly interleaved. If this is the
string "2>&1", then standard error is redirected to standard output. IF NULL (the
default), then standard output is not returned, but it is recorded and included in
the error object if an error happens.

title Character of length 1, title of the UI.

theme A call to bslib::bs_theme() with the bslib theme.

spinner TRUE to add a busy spinner, FALSE to omit.

Details

The controls of the app are in the left panel. The seconds control is the number of seconds between
refreshes of the graph, and the other settings match the arguments of tar_visnetwork().

Value

A handle to callr::r_bg() background process running the app.

See Also

Other progress: tar_canceled(), tar_completed(), tar_dispatched(), tar_errored(), tar_poll(),
tar_progress(), tar_progress_branches(), tar_progress_summary(), tar_skipped(), tar_watch_server(),
tar_watch_ui()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
sleep_run <- function(...) {
Sys.sleep(10)

}
list(

tar_target(settings, sleep_run()),
tar_target(data1, sleep_run(settings)),
tar_target(data2, sleep_run(settings))

)
}, ask = FALSE)
Launch the app in a background process.

tar_watch_server 211

tar_watch(seconds = 10, outdated = FALSE, targets_only = TRUE)
Run the pipeline.
tar_make()
})
}

tar_watch_server Shiny module server for tar_watch()

Description

Use tar_watch_ui() and tar_watch_server() to include tar_watch() as a Shiny module in an
app.

Usage

tar_watch_server(
id,
height = "650px",
exclude = ".Random.seed",
config = Sys.getenv("TAR_CONFIG", "_targets.yaml"),
project = Sys.getenv("TAR_PROJECT", "main")

)

Arguments

id Character of length 1, ID corresponding to the UI function of the module.

height Character of length 1, height of the visNetwork widget and branches table.

exclude Character vector of nodes to omit from the graph.

config Character of length 1, file path of the YAML configuration file with targets
project settings. The config argument specifies which YAML configuration file
that tar_config_get() reads from or tar_config_set() writes to in a sin-
gle function call. It does not globally change which configuration file is used
in subsequent function calls. The default file path of the YAML file is always
_targets.yaml unless you set another default path using the TAR_CONFIG envi-
ronment variable, e.g. Sys.setenv(TAR_CONFIG = "custom.yaml"). This also
has the effect of temporarily modifying the default arguments to other functions
such as tar_make() because the default arguments to those functions are con-
trolled by tar_config_get().

project Character of length 1, name of the current targets project. Thanks to the
config R package, targets YAML configuration files can store multiple sets
of configuration settings, with each set corresponding to its own project. The
project argument allows you to set or get a configuration setting for a spe-
cific project for a given call to tar_config_set() or tar_config_get(). The
default project is always called "main" unless you set another default project
using the TAR_PROJECT environment variable, e.g. Sys.setenv(tar_project

212 tar_watch_ui

= "custom"). This also has the effect of temporarily modifying the default ar-
guments to other functions such as tar_make() because the default arguments
to those functions are controlled by tar_config_get().

Value

A Shiny module server.

See Also

Other progress: tar_canceled(), tar_completed(), tar_dispatched(), tar_errored(), tar_poll(),
tar_progress(), tar_progress_branches(), tar_progress_summary(), tar_skipped(), tar_watch(),
tar_watch_ui()

tar_watch_ui Shiny module UI for tar_watch()

Description

Use tar_watch_ui() and tar_watch_server() to include tar_watch() as a Shiny module in an
app.

Usage

tar_watch_ui(
id,
label = "tar_watch_label",
seconds = 10,
seconds_min = 1,
seconds_max = 60,
seconds_step = 1,
targets_only = FALSE,
outdated = FALSE,
label_tar_visnetwork = NULL,
level_separation = 150,
degree_from = 1L,
degree_to = 1L,
height = "650px",
display = "summary",
displays = c("summary", "branches", "progress", "graph", "about"),
title = "",
theme = bslib::bs_theme(),
spinner = FALSE

)

tar_watch_ui 213

Arguments

id Character of length 1, ID corresponding to the UI function of the module.
label Label for the module.
seconds Numeric of length 1, default number of seconds between refreshes of the graph.

Can be changed in the app controls.
seconds_min Numeric of length 1, lower bound of seconds in the app controls.
seconds_max Numeric of length 1, upper bound of seconds in the app controls.
seconds_step Numeric of length 1, step size of seconds in the app controls.
targets_only Logical, whether to restrict the output to just targets (FALSE) or to also include

global functions and objects.
outdated Logical, whether to show colors to distinguish outdated targets from up-to-date

targets. (Global functions and objects still show these colors.) Looking for
outdated targets takes a lot of time for large pipelines with lots of branches, and
setting outdated to FALSE is a nice way to speed up the graph if you only want
to see dependency relationships and pipeline progress.

label_tar_visnetwork

Character vector, label argument to tar_visnetwork().
level_separation

Numeric of length 1, levelSeparation argument of visNetwork::visHierarchicalLayout().
Controls the distance between hierarchical levels. Consider changing the value
if the aspect ratio of the graph is far from 1. If level_separation is NULL, the
levelSeparation argument of visHierarchicalLayout() defaults to 150.

degree_from Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_from controls the number of edges the neighborhood
extends upstream.

degree_to Integer of length 1. When you click on a node, the graph highlights a neighbor-
hood of that node. degree_to controls the number of edges the neighborhood
extends downstream.

height Character of length 1, height of the visNetwork widget and branches table.
display Character of length 1, which display to show first.
displays Character vector of choices for the display. Elements can be any of "graph",

"summary", "branches", or "about".
title Character of length 1, title of the UI.
theme A call to bslib::bs_theme() with the bslib theme.
spinner TRUE to add a busy spinner, FALSE to omit.

Value

A Shiny module UI.

See Also

Other progress: tar_canceled(), tar_completed(), tar_dispatched(), tar_errored(), tar_poll(),
tar_progress(), tar_progress_branches(), tar_progress_summary(), tar_skipped(), tar_watch(),
tar_watch_server()

214 tar_workspace

tar_workspace Load a saved workspace and seed for debugging.

Description

Load the packages, environment, and random number generator seed of a target.

Usage

tar_workspace(
name,
envir = parent.frame(),
packages = TRUE,
source = TRUE,
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")

)

Arguments

name Symbol, name of the target whose workspace to read.

envir Environment in which to put the objects.

packages Logical, whether to load the required packages of the target.

source Logical, whether to run _targets.R to load user-defined global object depen-
dencies into envir. If TRUE, then envir should either be the global environment
or inherit from the global environment.

script Character of length 1, path to the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set this argument, the value of
tar_config_get("script") is temporarily changed for the current function
call. See tar_script(), tar_config_get(), and tar_config_set() for de-
tails about the target script file and how to set it persistently for a project.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Details

If you activate workspaces through the workspaces argument of tar_option_set(), then un-
der the circumstances you specify, targets will save a special workspace file to a location in in
_targets/workspaces/. The workspace file is a compact reference that allows tar_workspace()
to load the target’s dependencies and random number generator seed as long as the data objects are
still in the data store (usually files in _targets/objects/). When you are done debugging, you
can remove the workspace files using tar_destroy(destroy = "workspaces").

tar_workspaces 215

Value

This function returns NULL, but it does load the target’s required packages, as well as multiple
objects into the environment (envir argument) in order to replicate the workspace where the er-
ror happened. These objects include the global objects at the time tar_make() was called and
the dependency targets. The random number generator seed for the target is also assigned with
tar_seed_set().

See Also

Other debug: tar_load_globals(), tar_traceback(), tar_workspaces()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tmp <- sample(1)
tar_script({

library(targets)
library(tarchetypes)
tar_option_set(workspace_on_error = TRUE)
list(
tar_target(x, "loaded"),
tar_target(y, stop(x))

)
}, ask = FALSE)
The following code throws an error for demonstration purposes.
try(tar_make())
exists("x") # Should be FALSE.
tail(.Random.seed) # for comparison to the RNG state after tar_workspace(y)
tar_workspace(y)
exists("x") # Should be TRUE.
print(x) # "loaded"
Should be different: tar_workspace() runs
tar_seed_set(tar_meta(y, seed)$seed)
tail(.Random.seed)
})
}

tar_workspaces List saved target workspaces.

Description

List target workspaces currently saved to _targets/workspaces/. See tar_workspace() for more
information.

Usage

tar_workspaces(names = NULL, store = targets::tar_config_get("store"))

216 use_targets

Arguments

names Optional tidyselect selector to return a tactical subset of workspace names. If
NULL, all names are selected. The object supplied to names should be NULL or a
tidyselect expression like any_of() or starts_with() from tidyselect it-
self, or tar_described_as() to select target names based on their descriptions.

store Character of length 1, path to the targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/. When you set this argument, the value
of tar_config_get("store") is temporarily changed for the current function
call. See tar_config_get() and tar_config_set() for details about how to
set the data store path persistently for a project.

Value

Character vector of available workspaces to load with tar_workspace().

See Also

Other debug: tar_load_globals(), tar_traceback(), tar_workspace()

Examples

if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({

library(targets)
library(tarchetypes)
tar_option_set(workspace_on_error = TRUE)
list(
tar_target(x, "value"),
tar_target(y, x)

)
}, ask = FALSE)
tar_make()
tar_workspaces()
tar_workspaces(contains("x"))
})
}

use_targets Use targets

Description

Set up targets for an existing project.

use_targets 217

Usage

use_targets(
script = targets::tar_config_get("script"),
open = interactive(),
overwrite = FALSE,
scheduler = NULL,
job_name = NULL

)

Arguments

script Character of length 1, where to write the target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R.

open Logical of length 1, whether to open the file for editing in the RStudio IDE.

overwrite Logical of length 1, TRUE to overwrite the the target script file, FALSE otherwise.

scheduler Deprecated in version 1.5.0.9001 (2024-02-12).

job_name Deprecated in version 1.5.0.9001 (2024-02-12).

Details

use_targets() writes an example _targets.R script to get started with a targets pipeline for
the current project. Follow the comments in this script to adapt it as needed. For more information,
please visit https://books.ropensci.org/targets/walkthrough.html.

Value

NULL (invisibly).

See Also

Other help: tar_reprex(), targets-package, use_targets_rmd()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
use_targets(open = FALSE)
})
}

https://books.ropensci.org/targets/walkthrough.html

218 use_targets_rmd

use_targets_rmd Use targets with Target Markdown.

Description

Create an example Target Markdown report to get started with targets.

Usage

use_targets_rmd(path = "_targets.Rmd", open = interactive())

Arguments

path Character of length 1, output path of the Target Markdown report relative to the
current active project.

open Logical, whether to open the file for editing in the RStudio IDE.

Value

NULL (invisibly).

See Also

Other help: tar_reprex(), targets-package, use_targets()

Examples

if (identical(Sys.getenv("TAR_INTERACTIVE_EXAMPLES"), "true")) {
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
use_targets(open = FALSE)
})
}

Index

∗ Target Markdown
tar_engine_knitr, 43
tar_interactive, 64
tar_noninteractive, 104
tar_toggle, 197

∗ branching
tar_branch_index, 11
tar_branch_names, 12
tar_branches, 10
tar_pattern, 124

∗ clean
tar_delete, 34
tar_destroy, 39
tar_invalidate, 65
tar_prune, 134
tar_prune_list, 137
tar_unversion, 201

∗ configuration
tar_config_get, 18
tar_config_projects, 20
tar_config_set, 21
tar_config_unset, 25
tar_config_yaml, 27
tar_envvars, 46
tar_option_get, 108
tar_option_reset, 109
tar_option_set, 110

∗ content-addressable storage
tar_repository_cas, 143
tar_repository_cas_local, 147
tar_repository_cas_local_gc, 150

∗ data
tar_crew, 29
tar_pid, 126
tar_process, 128

∗ debug
tar_load_globals, 71
tar_traceback, 198
tar_workspace, 214

tar_workspaces, 215
∗ existence

tar_exist_meta, 49
tar_exist_objects, 50
tar_exist_process, 51
tar_exist_progress, 51
tar_exist_script, 52

∗ help
tar_reprex, 152
targets-package, 5
use_targets, 216
use_targets_rmd, 218

∗ inspect
tar_deps, 36
tar_manifest, 83
tar_network, 100
tar_outdated, 118
tar_sitrep, 182
tar_validate, 202

∗ metadata
tar_meta, 89
tar_meta_delete, 92
tar_meta_download, 94
tar_meta_sync, 95
tar_meta_upload, 97

∗ pipeline
tar_make, 73
tar_make_clustermq, 76
tar_make_future, 80

∗ progress
tar_canceled, 15
tar_completed, 16
tar_dispatched, 42
tar_errored, 48
tar_poll, 127
tar_progress, 130
tar_progress_branches, 131
tar_progress_summary, 133
tar_skipped, 185

219

220 INDEX

tar_watch, 207
tar_watch_server, 211
tar_watch_ui, 212

∗ pseudo-random number generation
tar_seed_create, 177
tar_seed_get, 179
tar_seed_set, 180

∗ resources
tar_resources, 153
tar_resources_aws, 156
tar_resources_clustermq, 158
tar_resources_crew, 160
tar_resources_custom_format, 161
tar_resources_feather, 163
tar_resources_fst, 164
tar_resources_future, 165
tar_resources_gcp, 167
tar_resources_network, 168
tar_resources_parquet, 170
tar_resources_qs, 171
tar_resources_repository_cas, 173
tar_resources_url, 174

∗ scripts
tar_edit, 43
tar_github_actions, 57
tar_helper, 63
tar_renv, 140
tar_script, 176

∗ storage
tar_format, 53
tar_load, 67
tar_load_everything, 70
tar_objects, 105
tar_read, 138

∗ targets
tar_cue, 30
tar_target, 187

∗ time
tar_newer, 103
tar_older, 106
tar_timestamp, 196

∗ utilities to extend targets
tar_assert, 6
tar_condition, 17
tar_language, 66
tar_test, 195

∗ utilities
tar_active, 5

tar_backoff, 9
tar_call, 13
tar_cancel, 14
tar_definition, 32
tar_described_as, 37
tar_envir, 45
tar_format_get, 56
tar_group, 61
tar_name, 99
tar_path_script, 121
tar_path_script_support, 121
tar_path_store, 122
tar_path_target, 123
tar_source, 186
tar_unblock_process, 200

∗ visualize
tar_glimpse, 58
tar_mermaid, 86
tar_visnetwork, 204

any_of(), 15, 16, 34, 42, 48, 59, 65, 68, 73,
77, 80, 84, 87, 90, 100, 101, 103,
105, 107, 119, 129, 130, 132, 182,
185, 201, 204, 205, 216

bslib::bs_theme(), 210, 213

cross (tar_pattern), 124

head (tar_pattern), 124

library(), 140
list(), 177, 192

map (tar_pattern), 124

qs2::qs_read(), 116, 193
qs2::qs_save(), 172
qs::qread(), 116, 193

sample (tar_pattern), 124
starts_with(), 15, 16, 34, 42, 48, 59, 65, 68,

73, 77, 80, 84, 87, 90, 100, 101, 103,
105, 107, 119, 129, 130, 132, 182,
185, 201, 204, 205, 216

tail (tar_pattern), 124
tar_active, 5, 9, 14, 15, 33, 38, 46, 57, 62,

99, 121–124, 187, 200
tar_assert, 6, 18, 67, 195

INDEX 221

tar_assert_chr (tar_assert), 6
tar_assert_dbl (tar_assert), 6
tar_assert_df (tar_assert), 6
tar_assert_envir (tar_assert), 6
tar_assert_equal_lengths (tar_assert), 6
tar_assert_expr (tar_assert), 6
tar_assert_file (tar_assert), 6
tar_assert_finite (tar_assert), 6
tar_assert_flag (tar_assert), 6
tar_assert_function (tar_assert), 6
tar_assert_function_arguments

(tar_assert), 6
tar_assert_ge (tar_assert), 6
tar_assert_identical (tar_assert), 6
tar_assert_in (tar_assert), 6
tar_assert_inherits (tar_assert), 6
tar_assert_int (tar_assert), 6
tar_assert_internet (tar_assert), 6
tar_assert_lang (tar_assert), 6
tar_assert_le (tar_assert), 6
tar_assert_lgl (tar_assert), 6
tar_assert_list (tar_assert), 6
tar_assert_match (tar_assert), 6
tar_assert_name (tar_assert), 6
tar_assert_named (tar_assert), 6
tar_assert_names (tar_assert), 6
tar_assert_nonempty (tar_assert), 6
tar_assert_nonmissing (tar_assert), 6
tar_assert_not_dir (tar_assert), 6
tar_assert_not_dirs (tar_assert), 6
tar_assert_not_expr (tar_assert), 6
tar_assert_not_in (tar_assert), 6
tar_assert_null (tar_assert), 6
tar_assert_nzchar (tar_assert), 6
tar_assert_package (tar_assert), 6
tar_assert_path (tar_assert), 6
tar_assert_positive (tar_assert), 6
tar_assert_scalar (tar_assert), 6
tar_assert_store (tar_assert), 6
tar_assert_target (tar_assert), 6
tar_assert_target_list (tar_assert), 6
tar_assert_true (tar_assert), 6
tar_assert_unique (tar_assert), 6
tar_assert_unique_targets (tar_assert),

6
tar_backoff, 5, 9, 14, 15, 33, 38, 46, 57, 62,

99, 121–124, 187, 200
tar_backoff(), 9, 114

tar_branch_index, 11, 11, 13, 125
tar_branch_names, 11, 12, 12, 125
tar_branch_names(), 12, 13
tar_branch_names_raw

(tar_branch_names), 12
tar_branch_names_raw(), 12, 13
tar_branches, 10, 12, 13, 125
tar_branches(), 36
tar_call, 5, 9, 13, 15, 33, 38, 46, 57, 62, 99,

121–124, 187, 200
tar_cancel, 5, 9, 14, 14, 33, 38, 46, 57, 62,

99, 121–124, 187, 200
tar_cancel(), 133
tar_canceled, 15, 17, 42, 48, 128, 131–133,

185, 210, 212, 213
tar_cas_d(), 145, 149, 152
tar_cas_l(), 144, 145, 149, 152
tar_cas_u(), 145, 149, 152
tar_completed, 16, 16, 42, 48, 128, 131–133,

185, 210, 212, 213
tar_condition, 8, 17, 67, 195
tar_config_get, 18, 21, 25, 27, 28, 47, 108,

109, 117
tar_config_get(), 10, 12, 15, 16, 29, 34, 38,

40, 42, 43, 48–52, 60, 65, 75, 79, 82,
85, 88, 91, 93, 95, 96, 98, 101–103,
105, 107, 120, 126, 128–130, 132,
133, 135, 137–139, 141, 150, 184,
185, 199–201, 203, 206, 214, 216

tar_config_projects, 20, 20, 25, 27, 28, 47,
108, 109, 117

tar_config_set, 20, 21, 21, 27, 28, 47, 108,
109, 117

tar_config_set(), 10, 12, 15, 16, 29, 34, 38,
40, 42, 43, 47–52, 60, 65, 75, 79, 82,
85, 88, 91, 93, 95, 96, 98, 101–103,
105, 107, 120, 126, 128–130, 132,
133, 135, 137–139, 141, 150, 184,
185, 199–201, 203, 206, 214, 216

tar_config_unset, 20, 21, 25, 25, 28, 47,
108, 109, 117

tar_config_unset(), 22–24, 71
tar_config_yaml, 20, 21, 25, 27, 27, 47, 108,

109, 117
tar_crew, 29, 127, 129
tar_cue, 30, 194
tar_cue(), 84, 118, 182–184
tar_definition, 5, 9, 14, 15, 32, 38, 46, 57,

222 INDEX

62, 99, 121–124, 187, 200
tar_delete, 34, 41, 66, 136, 138, 202
tar_delete(), 35, 40, 41, 69, 136, 139, 202
tar_deparse_language (tar_language), 66
tar_deparse_safe (tar_language), 66
tar_deps, 36, 85, 102, 120, 184, 203
tar_deps(), 32, 36
tar_deps_raw (tar_deps), 36
tar_deps_raw(), 36
tar_described_as, 5, 9, 14, 15, 33, 37, 46,

57, 62, 99, 121–124, 187, 200
tar_described_as(), 15, 16, 34, 38, 48, 59,

65, 68, 73, 77, 80, 84, 87, 100, 103,
105, 107, 119, 130, 132, 182, 185,
201, 204, 216

tar_destroy, 35, 39, 66, 136, 138, 202
tar_destroy(), 35, 41, 69, 91, 136, 139, 140,

202
tar_dispatched, 16, 17, 42, 48, 128,

131–133, 185, 210, 212, 213
tar_edit, 43, 58, 64, 142, 177
tar_engine_knitr, 43, 65, 105, 198
tar_envir, 5, 9, 14, 15, 33, 38, 45, 57, 62, 99,

121–124, 187, 200
tar_envvars, 20, 21, 25, 27, 28, 46, 108, 109,

117
tar_envvars(), 47
tar_error (tar_condition), 17
tar_errored, 16, 17, 42, 48, 128, 131–133,

185, 210, 212, 213
tar_exist_meta, 49, 50–53
tar_exist_objects, 49, 50, 51–53
tar_exist_process, 49, 50, 51, 52, 53
tar_exist_progress, 49–51, 51, 53
tar_exist_script, 49–52, 52
tar_format, 53, 69, 70, 106, 140
tar_format(), 55, 116, 117, 154, 162, 173,

193, 194
tar_format_get, 5, 9, 14, 15, 33, 38, 46, 56,

62, 99, 121–124, 187, 200
tar_format_get(), 57, 143
tar_github_actions, 43, 57, 64, 142, 177
tar_github_actions(), 47
tar_glimpse, 58, 89, 207
tar_glimpse(), 22, 83
tar_group, 5, 9, 14, 15, 33, 38, 46, 57, 61, 99,

121–124, 187, 200
tar_group(), 112, 190

tar_helper, 43, 58, 63, 142, 177
tar_helper(), 63
tar_helper_raw (tar_helper), 63
tar_helper_raw(), 63
tar_interactive, 45, 64, 105, 198
tar_invalidate, 35, 41, 65, 136, 138, 202
tar_invalidate(), 34, 40, 92, 106
tar_language, 8, 18, 66, 195
tar_load, 55, 67, 70, 106, 140
tar_load(), 35, 41, 65, 67–69, 136, 139, 202
tar_load_everything, 55, 69, 70, 106, 140
tar_load_everything(), 67
tar_load_globals, 71, 199, 215, 216
tar_load_raw (tar_load), 67
tar_load_raw(), 67, 68
tar_make, 73, 79, 83
tar_make(), 9, 13, 19–24, 26–29, 32, 38–40,

45, 57, 60, 65, 71, 75, 76, 78–80, 82,
85, 88, 91, 92, 99, 101, 111,
114–116, 118, 119, 123, 127, 129,
130, 135, 137, 141, 142, 144, 145,
148, 149, 151, 177, 179, 182–184,
192, 193, 200, 203, 206, 209, 211,
212, 215

tar_make_clustermq, 76, 76, 83
tar_make_clustermq(), 9, 23, 24, 40, 47, 92,

111, 114, 135
tar_make_future, 76, 79, 80
tar_make_future(), 9, 23, 40, 47, 55, 84, 92,

111, 114, 135, 191
tar_manifest, 36, 83, 102, 120, 184, 203
tar_manifest(), 38, 114, 192
tar_mermaid, 61, 86, 207
tar_message (tar_condition), 17
tar_message_run (tar_condition), 17
tar_message_validate (tar_condition), 17
tar_meta, 89, 93, 95, 96, 98
tar_meta(), 68, 70, 91, 92, 115, 139, 183
tar_meta_delete, 92, 92, 95, 96, 98
tar_meta_delete(), 91, 92
tar_meta_download, 92, 93, 94, 96, 98
tar_meta_download(), 35, 41, 69, 92, 136,

140, 202
tar_meta_sync, 92, 93, 95, 95, 98
tar_meta_sync(), 35, 41, 69, 92, 96, 136,

140, 202
tar_meta_upload, 92, 93, 95, 96, 97
tar_meta_upload(), 35, 41, 69, 92, 136, 140,

INDEX 223

202
tar_name, 5, 9, 14, 15, 33, 38, 46, 57, 62, 99,

121–124, 187, 200
tar_network, 36, 85, 100, 120, 184, 203
tar_network(), 36
tar_newer, 103, 107, 197
tar_noninteractive, 45, 65, 104, 198
tar_objects, 55, 69, 70, 105, 140
tar_older, 104, 106, 197
tar_option_get, 20, 21, 25, 27, 28, 47, 108,

109, 117
tar_option_get(), 25, 110
tar_option_reset, 20, 21, 25, 27, 28, 47,

108, 109, 117
tar_option_reset(), 115
tar_option_set, 20, 21, 25, 27, 28, 47, 108,

109, 110
tar_option_set(), 22, 31, 53, 54, 75, 79, 82,

84, 91, 92, 94, 97, 108, 109, 116,
117, 142, 148, 153–155, 158, 159,
161–163, 165, 166, 168–170, 172,
173, 175, 177, 193, 214

tar_outdated, 36, 85, 102, 118, 184, 203
tar_outdated(), 23, 92
tar_path, 5, 9, 14, 15, 33, 38, 46, 57, 62, 99,

121–124, 187, 200
tar_path_script, 5, 9, 14, 15, 33, 38, 46, 57,

62, 99, 121, 122–124, 187, 200
tar_path_script_support, 5, 9, 14, 15, 33,

38, 46, 57, 62, 99, 121, 121, 123,
124, 187, 200

tar_path_store, 5, 9, 14, 15, 33, 38, 46, 57,
62, 99, 121, 122, 122, 124, 187, 200

tar_path_target, 5, 9, 14, 15, 33, 38, 46, 57,
62, 99, 121–123, 123, 187, 200

tar_path_target(), 65
tar_pattern, 11–13, 124
tar_pid, 29, 126, 129
tar_poll, 16, 17, 42, 48, 127, 131–133, 185,

210, 212, 213
tar_print (tar_condition), 17
tar_process, 29, 127, 128
tar_progress, 16, 17, 42, 48, 128, 130, 132,

133, 185, 210, 212, 213
tar_progress(), 91
tar_progress_branches, 16, 17, 42, 48, 128,

131, 131, 133, 185, 210, 212, 213
tar_progress_summary, 16, 17, 42, 48, 128,

131, 132, 133, 185, 210, 212, 213
tar_progress_summary(), 127
tar_prune, 35, 41, 66, 134, 138, 202
tar_prune(), 40, 137, 138
tar_prune_list, 35, 41, 66, 136, 137, 202
tar_prune_list(), 135
tar_read, 55, 69, 70, 106, 138
tar_read(), 35, 41, 65, 69, 73, 136, 138–140,

202
tar_read_raw (tar_read), 138
tar_read_raw(), 138, 139
tar_renv, 43, 58, 64, 140, 177
tar_repository_cas, 143, 149, 152
tar_repository_cas(), 112, 145, 148, 149,

151, 155, 173, 190
tar_repository_cas_local, 146, 147, 152
tar_repository_cas_local(), 143, 145,

149, 152
tar_repository_cas_local_gc, 146, 149,

150
tar_reprex, 5, 152, 217, 218
tar_resources, 153, 158, 159, 161, 162,

164–166, 168, 169, 171, 172, 174,
175

tar_resources_aws, 155, 156, 159, 161, 162,
164–166, 168, 169, 171, 172, 174,
175

tar_resources_aws(), 112, 189
tar_resources_clustermq, 155, 158, 158,

161, 162, 164–166, 168, 169, 171,
172, 174, 175

tar_resources_crew, 155, 158, 159, 160,
162, 164–166, 168, 169, 171, 172,
174, 175

tar_resources_crew(), 154
tar_resources_custom_format, 155, 158,

159, 161, 161, 164–166, 168, 169,
171, 172, 174, 175

tar_resources_custom_format(), 54, 154
tar_resources_feather, 155, 158, 159, 161,

162, 163, 165, 166, 168, 169, 171,
172, 174, 175

tar_resources_feather(), 154
tar_resources_fst, 155, 158, 159, 161, 162,

164, 164, 166, 168, 169, 171, 172,
174, 175

tar_resources_future, 155, 158, 159, 161,
162, 164, 165, 165, 168, 169, 171,

224 INDEX

172, 174, 175
tar_resources_gcp, 155, 158, 159, 161, 162,

164–166, 167, 169, 171, 172, 174,
175

tar_resources_network, 155, 158, 159, 161,
162, 164–166, 168, 168, 171, 172,
174, 175

tar_resources_network(), 144, 148, 175
tar_resources_parquet, 155, 158, 159, 161,

162, 164–166, 168, 169, 170, 172,
174, 175

tar_resources_qs, 155, 158, 159, 161, 162,
164–166, 168, 169, 171, 171, 174,
175

tar_resources_repository_cas, 155, 158,
159, 161, 162, 164–166, 168, 169,
171, 172, 173, 175

tar_resources_repository_cas(), 144,
146, 155

tar_resources_url, 155, 158, 159, 161, 162,
164–166, 168, 169, 171, 172, 174,
174

tar_script, 43, 58, 64, 142, 176
tar_script(), 10, 38, 43, 47, 52, 60, 64, 75,

79, 82, 85, 88, 93, 95, 96, 98, 101,
120, 135, 137, 141, 184, 200, 203,
206, 214

tar_seed(), 115
tar_seed_create, 177, 180, 182
tar_seed_create(), 178, 180
tar_seed_get, 179, 179, 182
tar_seed_set, 179, 180, 180
tar_seed_set(), 90, 178–181, 189, 215
tar_sitrep, 36, 85, 102, 120, 182, 203
tar_skipped, 16, 17, 42, 48, 128, 131–133,

185, 210, 212, 213
tar_source, 5, 9, 14, 15, 33, 38, 46, 57, 62,

99, 121–124, 186, 200
tar_store, 5, 9, 14, 15, 33, 38, 46, 57, 62, 99,

121–124, 187, 200
tar_target, 32, 187
tar_target(), 10, 22, 31, 32, 37, 50, 53, 54,

75, 79, 82, 84, 90, 91, 103, 107–110,
112, 113, 116, 117, 124, 125, 142,
148, 153–156, 158, 159, 161–175,
177, 187, 189, 190, 193

tar_target_raw (tar_target), 187
tar_target_raw(), 84, 108–110, 187–189

tar_test, 8, 18, 67, 195
tar_throw_file (tar_condition), 17
tar_throw_run (tar_condition), 17
tar_throw_validate (tar_condition), 17
tar_tidy_eval (tar_language), 66
tar_tidyselect_eval (tar_language), 66
tar_timestamp, 104, 107, 196
tar_timestamp(), 196
tar_timestamp_raw (tar_timestamp), 196
tar_timestamp_raw(), 196
tar_toggle, 45, 65, 105, 197
tar_traceback, 72, 198, 215, 216
tar_unblock_process, 5, 9, 14, 15, 33, 38,

46, 57, 62, 99, 121–124, 187, 200
tar_unblock_process(), 200
tar_unscript, 200
tar_unscript(), 201
tar_unversion, 35, 41, 66, 136, 138, 201
tar_unversion(), 35, 41, 69, 136, 140, 202
tar_validate, 36, 85, 102, 120, 184, 202
tar_visnetwork, 61, 89, 204
tar_visnetwork(), 13, 22, 58, 83, 92, 111,

114, 192, 207, 208, 210, 213
tar_warn_deprecate (tar_condition), 17
tar_warn_run (tar_condition), 17
tar_warn_validate (tar_condition), 17
tar_warning (tar_condition), 17
tar_watch, 16, 17, 42, 48, 128, 131–133, 185,

207, 212, 213
tar_watch(), 211, 212
tar_watch_server, 16, 17, 42, 48, 128,

131–133, 185, 210, 211, 213
tar_watch_server(), 207, 212
tar_watch_ui, 16, 17, 42, 48, 128, 131–133,

185, 210, 212, 212
tar_watch_ui(), 207, 211
tar_workspace, 72, 199, 214, 216
tar_workspace(), 40, 115, 178, 179, 181,

198, 215, 216
tar_workspaces, 72, 199, 215, 215
targets-package, 5

use_targets, 5, 153, 216, 218
use_targets_rmd, 5, 153, 217, 218

	targets-package
	tar_active
	tar_assert
	tar_backoff
	tar_branches
	tar_branch_index
	tar_branch_names
	tar_call
	tar_cancel
	tar_canceled
	tar_completed
	tar_condition
	tar_config_get
	tar_config_projects
	tar_config_set
	tar_config_unset
	tar_config_yaml
	tar_crew
	tar_cue
	tar_definition
	tar_delete
	tar_deps
	tar_described_as
	tar_destroy
	tar_dispatched
	tar_edit
	tar_engine_knitr
	tar_envir
	tar_envvars
	tar_errored
	tar_exist_meta
	tar_exist_objects
	tar_exist_process
	tar_exist_progress
	tar_exist_script
	tar_format
	tar_format_get
	tar_github_actions
	tar_glimpse
	tar_group
	tar_helper
	tar_interactive
	tar_invalidate
	tar_language
	tar_load
	tar_load_everything
	tar_load_globals
	tar_make
	tar_make_clustermq
	tar_make_future
	tar_manifest
	tar_mermaid
	tar_meta
	tar_meta_delete
	tar_meta_download
	tar_meta_sync
	tar_meta_upload
	tar_name
	tar_network
	tar_newer
	tar_noninteractive
	tar_objects
	tar_older
	tar_option_get
	tar_option_reset
	tar_option_set
	tar_outdated
	tar_path_script
	tar_path_script_support
	tar_path_store
	tar_path_target
	tar_pattern
	tar_pid
	tar_poll
	tar_process
	tar_progress
	tar_progress_branches
	tar_progress_summary
	tar_prune
	tar_prune_list
	tar_read
	tar_renv
	tar_repository_cas
	tar_repository_cas_local
	tar_repository_cas_local_gc
	tar_reprex
	tar_resources
	tar_resources_aws
	tar_resources_clustermq
	tar_resources_crew
	tar_resources_custom_format
	tar_resources_feather
	tar_resources_fst
	tar_resources_future
	tar_resources_gcp
	tar_resources_network
	tar_resources_parquet
	tar_resources_qs
	tar_resources_repository_cas
	tar_resources_url
	tar_script
	tar_seed_create
	tar_seed_get
	tar_seed_set
	tar_sitrep
	tar_skipped
	tar_source
	tar_target
	tar_test
	tar_timestamp
	tar_toggle
	tar_traceback
	tar_unblock_process
	tar_unscript
	tar_unversion
	tar_validate
	tar_visnetwork
	tar_watch
	tar_watch_server
	tar_watch_ui
	tar_workspace
	tar_workspaces
	use_targets
	use_targets_rmd
	Index

