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colSums2 colSums of a matrix

Description

colSums of a matrix

Usage

colSums2(Mat)

Arguments

Mat a matrix.

Value

colSums(Mat)
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constraint Sum-to-zero constraint

Description

Applies the sum-to-zero constraints to design and penalty matrices.

Usage

constraint(X, S, Z = NULL)

Arguments

X A design matrix

S A penalty matrix or a list of penalty matrices

Z A list of sum-to-zero constraint matrices; default is NULL

Value

List of objects with the following items:

X Design matrix

S Penalty matrix or list of penalty matrices

Z List of sum-to-zero constraint matrices

Examples

library(survPen)

set.seed(15)

X <- matrix(rnorm(10*3),nrow=10,ncol=3)
S <- matrix(rnorm(3*3),nrow=3,ncol=3) ; S <- 0.5*( S + t(S))

# applying sum-to-zero constraint to a desgin matrix and a penalty matrix
constr <- constraint(X,S)
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cor.var Implementation of the corrected variance Vc

Description

Takes the model at convergence and calculates the variance matrix corrected for smoothing param-
eter uncertainty

Usage

cor.var(model)

Arguments

model survPen object, see survPen.fit for details

Value

survPen object with corrected variance Vc

crs Bases for cubic regression splines (equivalent to "cr" in mgcv)

Description

Builds the design matrix and the penalty matrix for cubic regression splines.

Usage

crs(x, knots = NULL, df = 10, intercept = TRUE)

Arguments

x Numeric vector

knots Numeric vectors that specifies the knots of the splines (including boundaries);
default is NULL

df numeric value that indicates the number of knots desired (or degrees of freedom)
if knots=NULL; default is 10

intercept if FALSE, the intercept is excluded from the basis; default is TRUE

Details

See package mgcv and section 4.1.2 of Wood (2006) for more details about this basis
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Value

List of three elements

bs design matrix

pen penalty matrix

knots vector of knots (specified or calculated from df)

References

Wood, S. N. (2006), Generalized additive models: an introduction with R. London: Chapman &
Hall/CRC.

Examples

x <- seq(1,10,length=100)
# natural cubic spline with 3 knots
crs(x,knots=c(1,5,10))

crs.FP Penalty matrix constructor for cubic regression splines

Description

constructs the penalty matrix associated with cubic regression splines basis. This function is called
inside crs.

Usage

crs.FP(knots, h)

Arguments

knots Numeric vectors that specifies the knots of the splines (including boundaries)

h vector of knots differences (corresponds to diff(sort(knots)))

Value

List of two elements:

F.mat matrix used in function crs for basis construction

P.mat penalty matrix
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Examples

library(survPen)

# construction of the penalty matrix using a sequence of knots
knots <- c(0,0.25,0.5,0.75,1)
diff.knots <- diff(knots)

crs.FP(knots,diff.knots)

CumulHazard Cumulative hazard (integral of hazard) only

Description

Cumulative hazard (integral of hazard) only

Usage

CumulHazard(X_GL, weights, tm, n_legendre, n, beta, is_pwcst, pwcst_weights)

Arguments

X_GL list of matrices (length(X.GL)=n.legendre) for Gauss-Legendre quadrature

weights vector of weights for Gauss-Legendre integration on [-1;1]

tm vector of midpoints times for Gauss-Legendre integration; tm = 0.5*(t1 - t0)

n_legendre number of nodes for Gauss-Legendre quadrature

n number of individuals in the dataset

beta vector of estimated regression parameters

is_pwcst True if there is a piecewise constant baseline specified. False otherwise

pwcst_weights if is_pwcst is TRUE, matrix of weights giving the time contribution of each
individual on each sub-interval. Otherwise NULL

Value

cumulative hazard (integral of hazard)
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datCancer Patients diagnosed with cervical cancer

Description

A simulated dataset containing the follow-up times of 2000 patients diagnosed with cervical cancer
between 1990 and 2010. End of follow-up is June 30th 2013. The variables are as follows:

• begin. beginning of follow-up. For illustration purposes about left truncation only (0–1)
• fu. follow-up time in years (0–5)
• age. age at diagnosis in years, from 21.39 to 99.33
• yod. decimal year of diagnosis, from 1990.023 to 2010.999
• dead. censoring indicator (1 for dead, 0 for censored)
• rate. expected mortality rate (from overall mortality of the general population) (0–0.38)

Usage

data(datCancer)

Format

A data frame with 2000 rows and 6 variables

DerivCumulHazard Cumulative hazard (integral of hazard) and its first and second deriva-
tives wrt regression parameters beta

Description

Cumulative hazard (integral of hazard) and its first and second derivatives wrt regression parameters
beta

Usage

DerivCumulHazard(
X_GL,
weights,
tm,
n_legendre,
n,
p,
beta,
expected,
type,
is_pwcst,
pwcst_weights

)
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Arguments

X_GL list of matrices (length(X.GL)=n.legendre) for Gauss-Legendre quadrature

weights vector of weights for Gauss-Legendre integration on [-1;1]

tm vector of midpoints times for Gauss-Legendre integration; tm = 0.5*(t1 - t0)

n_legendre number of nodes for Gauss-Legendre quadrature

n number of individuals in the dataset

p number of regression parameters

beta vector of estimated regression parameters

expected vector of expected hazard rates

type "net", "overall" or "mult"

is_pwcst True if there is a piecewise constant baseline specified. False otherwise

pwcst_weights if is.pwcst is TRUE, matrix of weights giving the time contribution of each in-
dividual on each sub-interval. Otherwise NULL

Value

List of objects with the following items:

integral cumulative hazard (integral of hazard)

f.first first derivative of cumulative hazard wrt beta

f.second second derivative of cumulative hazard wrt beta

deriv_R Derivative of a Choleski factor

Description

Derivative of a Choleski factor

Usage

deriv_R(deriv_Vp, p, R1)

Arguments

deriv_Vp derivatives of the Bayesian covariance matrix wrt rho (log smoothing parame-
ters).

p number of regression parameters

R1 Choleski factor of Vp

Value

a list containing the derivatives of R1 wrt rho (log smoothing parameters)
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design.matrix Design matrix for the model needed in Gauss-Legendre quadrature

Description

Builds the design matrix for the whole model when the sum-to-zero constraints are specified. The
function is called inside model.cons for Gauss-Legendre quadrature.

Usage

design.matrix(
formula,
data.spec,
t1.name,
Z.smf,
Z.tensor,
Z.tint,
list.smf,
list.tensor,
list.tint,
list.rd

)

Arguments

formula formula object identifying the model

data.spec data frame that represents the environment from which the covariate values and
knots are to be calculated

t1.name name of the vector of follow-up times

Z.smf List of matrices that represents the sum-to-zero constraint to apply for smf
splines

Z.tensor List of matrices that represents the sum-to-zero constraint to apply for tensor
splines

Z.tint List of matrices that represents the sum-to-zero constraint to apply for tint
splines

list.smf List of all smf.smooth.spec objects contained in the model

list.tensor List of all tensor.smooth.spec objects contained in the model

list.tint List of all tint.smooth.spec objects contained in the model

list.rd List of all rd.smooth.spec objects contained in the model

Value

design matrix for the model
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Examples

library(survPen)

# standard spline of time with 4 knots

data <- data.frame(time=seq(0,5,length=100),event=1,t0=0)

form <- ~ smf(time,knots=c(0,1,3,5))

t1 <- eval(substitute(time), data)
t0 <- eval(substitute(t0), data)
event <- eval(substitute(event), data)

# Setting up the model
model.c <- model.cons(form,lambda=0,data.spec=data,t1=t1,t1.name="time",
t0=rep(0,100),t0.name="t0",event=event,event.name="event",
expected=rep(0,100),expected.name=NULL,type="overall",n.legendre=20,
cl="survPen(form,data,t1=time,event=event)",beta.ini=NULL)

# Retrieving the sum-to-zero constraint matrices and the list of knots
Z.smf <- model.c$Z.smf ; list.smf <- model.c$list.smf

# Calculating the design matrix
design.M <- design.matrix(form,data.spec=data,t1.name="time",Z.smf=Z.smf,list.smf=list.smf,
Z.tensor=NULL,Z.tint=NULL,list.tensor=NULL,list.tint=NULL,list.rd=NULL)

expected.table French women mortality table

Description

French women mortality table to serve as example of reference/expected mortality in excess haz-
ard and relative mortality ratio models The data come from the human mortality databse website:
https://www.mortality.org/Country/Country?cntr=FRATNP

• Age. Age group for 1-year interval from exact age x to just before exact age x+1 (0-110+)

• Year. Calendar Year (1816-2021)

• mx. Central death rate between ages x and x+1

Usage

data(expected.table)

Format

A data frame with 22866 rows and 3 variables
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grad_rho Gradient vector of LCV and LAML wrt rho (log smoothing parame-
ters)

Description

Gradient vector of LCV and LAML wrt rho (log smoothing parameters)

Usage

grad_rho(
X_GL,
GL_temp,
haz_GL,
deriv_rho_beta,
weights,
tm,
nb_smooth,
p,
n_legendre,
S_list,
temp_LAML,
Vp,
S_beta,
beta,
inverse_new_S,
X,
temp_deriv3,
event,
expected,
type,
Ve,
mat_temp,
method

)

Arguments

X_GL list of matrices (length(X.GL)=n.legendre) for Gauss-Legendre quadrature

GL_temp list of vectors used to make intermediate calculations and save computation time

haz_GL list of all the matrix-vector multiplications X.GL[[i]]%*%beta for Gauss Leg-
endre integration in order to save computation time

deriv_rho_beta firt derivative of beta wrt rho (implicit differentiation)

weights vector of weights for Gauss-Legendre integration on [-1;1]

tm vector of midpoints times for Gauss-Legendre integration; tm = 0.5*(t1 - t0)
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nb_smooth number of smoothing parameters

p number of regression parameters

n_legendre number of nodes for Gauss-Legendre quadrature

S_list List of all the rescaled penalty matrices multiplied by their associated smoothing
parameters

temp_LAML temporary matrix used when method="LAML" to save computation time

Vp Bayesian covariance matrix

S_beta List such that S_beta[[i]]=S_list[[i]]%*%beta

beta vector of estimated regression parameters

inverse_new_S inverse of the penalty matrix

X design matrix for the model

temp_deriv3 temporary matrix for third derivatives calculation when type="net" to save com-
putation time

event vector of right-censoring indicators

expected vector of expected hazard rates

type "net" or "overall"

Ve frequentist covariance matrix

mat_temp temporary matrix used when method="LCV" to save computation time

method criterion used to select the smoothing parameters. Should be "LAML" or "LCV";
default is "LAML"

Value

List of objects with the following items:

grad_rho gradient vector of LCV or LAML
deriv_rho_inv_Hess_beta

List of first derivatives of Vp wrt rho
deriv_rho_Hess_unpen_beta

List of first derivatives of the Hessian of the unpenalized log-likelihood wrt rho

grad_rho_mult Gradient vector of LCV and LAML wrt rho (log smoothing param-
eters). Version for multiplicative decomposition : relative mortality
ratio model

Description

Gradient vector of LCV and LAML wrt rho (log smoothing parameters). Version for multiplicative
decomposition : relative mortality ratio model
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Usage

grad_rho_mult(
X_GL,
GL_temp,
haz_GL,
deriv_rho_beta,
weights,
tm,
nb_smooth,
p,
n_legendre,
S_list,
temp_LAML,
Vp,
S_beta,
beta,
inverse_new_S,
X,
event,
expected,
Ve,
mat_temp,
method

)

Arguments

X_GL list of matrices (length(X.GL)=n.legendre) for Gauss-Legendre quadrature

GL_temp list of vectors used to make intermediate calculations and save computation time

haz_GL list of all the matrix-vector multiplications X.GL[[i]]%*%beta for Gauss Leg-
endre integration in order to save computation time

deriv_rho_beta firt derivative of beta wrt rho (implicit differentiation)

weights vector of weights for Gauss-Legendre integration on [-1;1]

tm vector of midpoints times for Gauss-Legendre integration; tm = 0.5*(t1 - t0)

nb_smooth number of smoothing parameters

p number of regression parameters

n_legendre number of nodes for Gauss-Legendre quadrature

S_list List of all the rescaled penalty matrices multiplied by their associated smoothing
parameters

temp_LAML temporary matrix used when method="LAML" to save computation time

Vp Bayesian covariance matrix

S_beta List such that S_beta[[i]]=S_list[[i]]%*%beta

beta vector of estimated regression parameters

inverse_new_S inverse of the penalty matrix
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X design matrix for the model

event vector of right-censoring indicators

expected vector of expected hazard rates

Ve frequentist covariance matrix

mat_temp temporary matrix used when method="LCV" to save computation time

method criterion used to select the smoothing parameters. Should be "LAML" or "LCV";
default is "LAML"

Value

List of objects with the following items:

grad_rho gradient vector of LCV or LAML
deriv_rho_inv_Hess_beta

List of first derivatives of Vp wrt rho
deriv_rho_Hess_unpen_beta

List of first derivatives of the Hessian of the unpenalized log-likelihood wrt rho

HazGL Gauss-Legendre evaluations

Description

Gauss-Legendre evaluations

Usage

HazGL(X_GL, n_legendre, beta)

Arguments

X_GL list of matrices (length(X.GL)=n.legendre) for Gauss-Legendre quadrature

n_legendre number of nodes for Gauss-Legendre quadrature

beta vector of estimated regression parameters

Value

list of all the matrix-vector multiplications X.GL[[i]]%*%beta for Gauss Legendre integration in
order to save computation time
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HeartFailure Patients with heart failure at risk of recurrent hospitalization events

Description

A simulated dataset containing 3 068 observations (2 268 events) in 800 patients with heart failure.
The dataset is based on hfaction_cpx12 dataset from package WA. The variables are as follows:

• id. patient identifcation number

• treatment. treatment=0 for control and treatment=1 for exercise training

• t0. beginning of follow-up for a given event

• t1. end of follow-up for a given event (up to 3.27 years)

• enum. event identification number for a given patient (between 1 and 6 events per patient)

• event. event indicator (1 for hospitalization, 0 for censored)

Usage

data(HeartFailure)

Format

A data frame with 3 068 rows and 6 variables

Hess_rho Hessian matrix of LCV and LAML wrt rho (log smoothing parameters)

Description

Hessian matrix of LCV and LAML wrt rho (log smoothing parameters)

Usage

Hess_rho(
X_GL,
X_GL_Q,
GL_temp,
haz_GL,
deriv2_rho_beta,
deriv_rho_beta,
weights,
tm,
nb_smooth,
p,
n_legendre,
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deriv_rho_inv_Hess_beta,
deriv_rho_Hess_unpen_beta,
S_list,
minus_eigen_inv_Hess_beta,
temp_LAML,
temp_LAML2,
Vp,
S_beta,
beta,
inverse_new_S,
X,
X_Q,
temp_deriv3,
temp_deriv4,
event,
expected,
type,
Ve,
deriv_rho_Ve,
mat_temp,
deriv_mat_temp,
eigen_mat_temp,
method

)

Arguments

X_GL list of matrices (length(X.GL)=n.legendre) for Gauss-Legendre quadrature

X_GL_Q list of transformed matrices from X_GL in order to calculate only the diagonal
of the fourth derivative of the likelihood

GL_temp list of vectors used to make intermediate calculations and save computation time

haz_GL list of all the matrix-vector multiplications X.GL[[i]]%*%beta for Gauss Leg-
endre integration in order to save computation time

deriv2_rho_beta

second derivatives of beta wrt rho (implicit differentiation)

deriv_rho_beta firt derivatives of beta wrt rho (implicit differentiation)

weights vector of weights for Gauss-Legendre integration on [-1;1]

tm vector of midpoints times for Gauss-Legendre integration; tm = 0.5*(t1 - t0)

nb_smooth number of smoothing parameters

p number of regression parameters

n_legendre number of nodes for Gauss-Legendre quadrature
deriv_rho_inv_Hess_beta

list of first derivatives of Vp wrt rho
deriv_rho_Hess_unpen_beta

list of first derivatives of Hessian of unpenalized log likelihood wrt rho
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S_list List of all the rescaled penalty matrices multiplied by their associated smoothing
parameters

minus_eigen_inv_Hess_beta

vector of eigenvalues of Vp

temp_LAML temporary matrix used when method="LAML" to save computation time

temp_LAML2 temporary matrix used when method="LAML" to save computation time

Vp Bayesian covariance matrix

S_beta List such that S_beta[[i]]=S_list[[i]]%*%beta

beta vector of estimated regression parameters

inverse_new_S inverse of the penalty matrix

X design matrix for the model

X_Q transformed design matrix in order to calculate only the diagonal of the fourth
derivative of the likelihood

temp_deriv3 temporary matrix for third derivatives calculation when type="net" to save com-
putation time

temp_deriv4 temporary matrix for fourth derivatives calculation when type="net" to save
computation time

event vector of right-censoring indicators

expected vector of expected hazard rates

type "net" or "overall"

Ve frequentist covariance matrix

deriv_rho_Ve list of derivatives of Ve wrt rho

mat_temp temporary matrix used when method="LCV" to save computation time

deriv_mat_temp list of derivatives of mat_temp wrt rho

eigen_mat_temp vector of eigenvalues of mat_temp

method criterion used to select the smoothing parameters. Should be "LAML" or "LCV";
default is "LAML"

Value

Hessian matrix of LCV or LAML wrt rho

Hess_rho_mult Hessian matrix of LCV and LAML wrt rho (log smoothing parame-
ters). Version for multiplicative decomposition : relative mortality
ratio model

Description

Hessian matrix of LCV and LAML wrt rho (log smoothing parameters). Version for multiplicative
decomposition : relative mortality ratio model
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Usage

Hess_rho_mult(
X_GL,
X_GL_Q,
GL_temp,
haz_GL,
deriv2_rho_beta,
deriv_rho_beta,
weights,
tm,
nb_smooth,
p,
n_legendre,
deriv_rho_inv_Hess_beta,
deriv_rho_Hess_unpen_beta,
S_list,
minus_eigen_inv_Hess_beta,
temp_LAML,
temp_LAML2,
Vp,
S_beta,
beta,
inverse_new_S,
X,
X_Q,
event,
expected,
Ve,
deriv_rho_Ve,
mat_temp,
deriv_mat_temp,
eigen_mat_temp,
method

)

Arguments

X_GL list of matrices (length(X.GL)=n.legendre) for Gauss-Legendre quadrature

X_GL_Q list of transformed matrices from X_GL in order to calculate only the diagonal
of the fourth derivative of the likelihood

GL_temp list of vectors used to make intermediate calculations and save computation time

haz_GL list of all the matrix-vector multiplications X.GL[[i]]%*%beta for Gauss Leg-
endre integration in order to save computation time

deriv2_rho_beta

second derivatives of beta wrt rho (implicit differentiation)

deriv_rho_beta firt derivatives of beta wrt rho (implicit differentiation)

weights vector of weights for Gauss-Legendre integration on [-1;1]
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tm vector of midpoints times for Gauss-Legendre integration; tm = 0.5*(t1 - t0)

nb_smooth number of smoothing parameters

p number of regression parameters

n_legendre number of nodes for Gauss-Legendre quadrature

deriv_rho_inv_Hess_beta

list of first derivatives of Vp wrt rho

deriv_rho_Hess_unpen_beta

list of first derivatives of Hessian of unpenalized log likelihood wrt rho

S_list List of all the rescaled penalty matrices multiplied by their associated smoothing
parameters

minus_eigen_inv_Hess_beta

vector of eigenvalues of Vp

temp_LAML temporary matrix used when method="LAML" to save computation time

temp_LAML2 temporary matrix used when method="LAML" to save computation time

Vp Bayesian covariance matrix

S_beta List such that S_beta[[i]]=S_list[[i]]%*%beta

beta vector of estimated regression parameters

inverse_new_S inverse of the penalty matrix

X design matrix for the model

X_Q transformed design matrix in order to calculate only the diagonal of the fourth
derivative of the likelihood

event vector of right-censoring indicators

expected vector of expected hazard rates

Ve frequentist covariance matrix

deriv_rho_Ve list of derivatives of Ve wrt rho

mat_temp temporary matrix used when method="LCV" to save computation time

deriv_mat_temp list of derivatives of mat_temp wrt rho

eigen_mat_temp vector of eigenvalues of mat_temp

method criterion used to select the smoothing parameters. Should be "LAML" or "LCV";
default is "LAML"

Value

Hessian matrix of LCV or LAML wrt rho
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instr Position of the nth occurrence of a string in another one

Description

Returns the position of the nth occurrence of str2 in str1. Returns 0 if str2 is not found. This code
was first suggested by Abdelmonem Mahmoud Amer in https://stackoverflow.com/a/33005653/5421090

Usage

instr(str1, str2, startpos = 1, n = 1)

Arguments

str1 main string in which str2 is to be found

str2 substring contained in str1

startpos starting position in str1; default is 1

n which occurrence is to be found; default is 1

Value

number representing the nth position of str2 in str1

Examples

library(survPen)

instr("character test to find the position of the third letter r","r",n=3)

inv.repam Reverses the initial reparameterization for stable evaluation of the log
determinant of the penalty matrix

Description

Transforms the final model by reversing the initial reparameterization performed by repam. Derives
the corrected version of the Bayesian covariance matrix

Usage

inv.repam(model, X.ini, S.pen.ini)



22 model.cons

Arguments

model survPen object, see survPen.fit for details

X.ini initial design matrix (before reparameterization)

S.pen.ini initial penalty matrices

Value

survPen object with standard parameterization

list.wicss List of ICSS standards for age-standardization of cancer (net) survival

Description

Four data frames are available in the list : 1, 2, 3 and "prostate". Each one corresponds to certain
types of cancer. Details can be found in Corazzieri et al. (2004) (10.1016/j.ejca.2004.07.002) or
at (in French) : https://www.santepubliquefrance.fr/docs/survie-des-personnes-atteintes-de-cancer-
en-france-metropolitaine-1989-2018-materiel-et-methodes For each data frame, the variables are as
follows:

• AgeClass. Age classes considered. Closed on the left and open on the right.

• AgeWeights. Weights associated with each age class

Usage

data(list.wicss)

Format

A list containing four data frames of 5 rows and 2 variables each

model.cons Design and penalty matrices for the model

Description

Sets up the model before optimization. Builds the design matrix, the penalty matrix and all the
design matrices needed for Gauss-Legendre quadrature.
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Usage

model.cons(
formula,
lambda,
data.spec,
t1,
t1.name,
t0,
t0.name,
event,
event.name,
expected,
expected.name,
type,
n.legendre,
cl,
beta.ini

)

Arguments

formula formula object identifying the model

lambda vector of smoothing parameters

data.spec data frame that represents the environment from which the covariate values and
knots are to be calculated

t1 vector of follow-up times

t1.name name of t1 in data.spec

t0 vector of origin times (usually filled with zeros)

t0.name name of t0 in data.spec

event vector of censoring indicators

event.name name of event in data.spec

expected vector of expected hazard

expected.name name of expected in data.spec

type "net" or "overall"

n.legendre number of nodes for Gauss-Legendre quadrature

cl original survPen call

beta.ini initial set of regression parameters

Value

List of objects with the following items:

cl original survPen call

type "net", "overall", or "mult"
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n.legendre number of nodes for Gauss-Legendre quadrature. If is.pwcst is TRUE, for sim-
plicity of implementation, n.legendre actually corresponds to the number of sub-
intervals

n number of individuals

p number of parameters

X.para design matrix associated with fully parametric parameters (unpenalized)

X.smooth design matrix associated with the penalized parameters

X design matrix for the model

is.pwcst TRUE if there is a piecewise constant (excess) hazard specification. In that case
the cumulative hazard can be derived without Gauss-Legendre quadrature

pwcst.breaks if is.pwcst is TRUE, vector of breaks defining the sub-intervals on which the
hazard is constant. Otherwise NULL.

pwcst.weights if is.pwcst is TRUE, matrix of weights giving the time contribution of each in-
dividual on each sub-interval. Otherwise NULL.

leg list of nodes and weights for Gauss-Legendre integration on [-1;1] as returned
by gauss.quad

X.GL list of matrices (length(X.GL)=n.legendre) for Gauss-Legendre quadrature

S penalty matrix for the model. Sum of the elements of S.list

S.scale vector of rescaling factors for the penalty matrices

rank.S rank of the penalty matrix

S.F balanced penalty matrix as described in section 3.1.2 of (Wood,2016). Sum of
the elements of S.F.list

U.F Eigen vectors of S.F, useful for the initial reparameterization to separate penal-
ized ad unpenalized subvectors. Allows stable evaluation of the log determinant
of S and its derivatives

S.smf List of penalty matrices associated with all "smf" calls

S.tensor List of penalty matrices associated with all "tensor" calls

S.tint List of penalty matrices associated with all "tint" calls

S.rd List of penalty matrices associated with all "rd" calls
smooth.name.smf

List of names for the "smf" calls associated with S.smf
smooth.name.tensor

List of names for the "tensor" calls associated with S.tensor
smooth.name.tint

List of names for the "tint" calls associated with S.tint

smooth.name.rd List of names for the "rd" calls associated with S.rd

S.pen List of all the rescaled penalty matrices redimensioned to df.tot size. Every
element of pen noted pen[[i]] is made from a penalty matrix returned by
smooth.cons and is multiplied by the factor S.scale=norm(X,type="I")^2/norm(pen[[i]],type="I")

S.list Equivalent to S.pen but with every element multiplied by its associated smooth-
ing parameter
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S.F.list Equivalent to S.pen but with every element divided by its Frobenius norm
lambda vector of smoothing parameters
df.para degrees of freedom associated with fully parametric terms (unpenalized)
df.smooth degrees of freedom associated with penalized terms
df.tot df.para + df.smooth

list.smf List of all smf.smooth.spec objects contained in the model
list.tensor List of all tensor.smooth.spec objects contained in the model
list.tint List of all tint.smooth.spec objects contained in the model
nb.smooth number of smoothing parameters
Z.smf List of matrices that represents the sum-to-zero constraints to apply for smf

splines
Z.tensor List of matrices that represents the sum-to-zero constraints to apply for tensor

splines
Z.tint List of matrices that represents the sum-to-zero constraints to apply for tint

splines
beta.ini initial set of regression parameters

Examples

library(survPen)

# standard spline of time with 4 knots

data <- data.frame(time=seq(0,5,length=100),event=1,t0=0)

form <- ~ smf(time,knots=c(0,1,3,5))

t1 <- eval(substitute(time), data)
t0 <- eval(substitute(t0), data)
event <- eval(substitute(event), data)

# The following code sets up everything we need in order to fit the model
model.c <- model.cons(form,lambda=0,data.spec=data,t1=t1,t1.name="time",
t0=rep(0,100),t0.name="t0",event=event,event.name="event",
expected=rep(0,100),expected.name=NULL,type="overall",n.legendre=20,
cl="survPen(form,data,t1=time,event=event)",beta.ini=NULL)

NR.beta Inner Newton-Raphson algorithm for regression parameters estima-
tion

Description

Applies Newton-Raphson algorithm for beta estimation. Two specific modifications aims at guar-
anteeing convergence : first the hessian is perturbed whenever it is not positive definite and second,
at each step, if the penalized log-likelihood is not maximized, the step is halved until it is.
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Usage

NR.beta(build, beta.ini, detail.beta, max.it.beta = 200, tol.beta = 1e-04)

Arguments

build list of objects returned by model.cons

beta.ini vector of initial regression parameters; default is NULL, in which case the first
beta will be log(sum(event)/sum(t1)) and the others will be zero (except if
there are "by" variables or if there is a piecewise constant hazard specification
in which cases all betas are set to zero)

detail.beta if TRUE, details concerning the optimization process in the regression parame-
ters are displayed; default is FALSE

max.it.beta maximum number of iterations to reach convergence in the regression parame-
ters; default is 200

tol.beta convergence tolerance for regression parameters; default is 1e-04

Details

If we note ll.pen and beta respectively the current penalized log-likelihood and estimated pa-
rameters and ll.pen.old and betaold the previous ones, the algorithm goes on while (abs(ll.pen-
ll.pen.old)>tol.beta) or any(abs((beta-betaold)/betaold)>tol.beta)

Value

List of objects:

beta estimated regression parameters

ll.unpen log-likelihood at convergence

ll.pen penalized log-likelihood at convergence

iter.beta number of iterations needed to converge

Examples

library(survPen)

# standard spline of time with 4 knots

data <- data.frame(time=seq(0,5,length=100),event=1,t0=0)

form <- ~ smf(time,knots=c(0,1,3,5))

t1 <- eval(substitute(time), data)
t0 <- eval(substitute(t0), data)
event <- eval(substitute(event), data)

# Setting up the model before fitting
model.c <- model.cons(form,lambda=0,data.spec=data,t1=t1,t1.name="time",
t0=rep(0,100),t0.name="t0",event=event,event.name="event",
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expected=rep(0,100),expected.name=NULL,type="overall",n.legendre=20,
cl="survPen(form,data,t1=time,event=event)",beta.ini=NULL)

# Estimating the regression parameters at given smoothing parameter (here lambda=0)
Newton1 <- NR.beta(model.c,beta.ini=rep(0,4),detail.beta=TRUE)

NR.rho Outer Newton-Raphson algorithm for smoothing parameters estima-
tion via LCV or LAML optimization

Description

Applies Newton-Raphson algorithm for smoothing parameters estimation. Two specific modifica-
tions aims at guaranteeing convergence : first the hessian is perturbed whenever it is not positive
definite and second, at each step, if LCV or -LAML is not minimized, the step is halved until it is.

Usage

NR.rho(
build,
rho.ini,
data,
formula,
max.it.beta = 200,
max.it.rho = 30,
beta.ini = NULL,
detail.rho = FALSE,
detail.beta = FALSE,
nb.smooth,
tol.beta = 1e-04,
tol.rho = 1e-04,
step.max = 5,
method = "LAML"

)

Arguments

build list of objects returned by model.cons

rho.ini vector of initial log smoothing parameters; if it is NULL, all log lambda are set
to -1

data an optional data frame containing the variables in the model

formula formula object specifying the model

max.it.beta maximum number of iterations to reach convergence in the regression parame-
ters; default is 200
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max.it.rho maximum number of iterations to reach convergence in the smoothing parame-
ters; default is 30

beta.ini vector of initial regression parameters; default is NULL, in which case the first
beta will be log(sum(event)/sum(t1)) and the others will be zero (except if
there are "by" variables or if there is a piecewise constant hazard specification
in which cases all betas are set to zero)

detail.rho if TRUE, details concerning the optimization process in the smoothing parame-
ters are displayed; default is FALSE

detail.beta if TRUE, details concerning the optimization process in the regression parame-
ters are displayed; default is FALSE

nb.smooth number of smoothing parameters

tol.beta convergence tolerance for regression parameters; default is 1e-04

tol.rho convergence tolerance for smoothing parameters; default is 1e-04

step.max maximum absolute value possible for any component of the step vector (on the
log smoothing parameter scale); default is 5

method LCV or LAML; default is LAML

Details

If we note val the current LCV or LAML value, val.old the previous one and grad the gradient
vector of LCV or LAML with respect to the log smoothing parameters, the algorithm goes on
while(abs(val-val.old)>tol.rho|any(abs(grad)>tol.rho))

Value

object of class survPen (see survPen.fit for details)

Examples

library(survPen)

# standard spline of time with 4 knots

data <- data.frame(time=seq(0,5,length=100),event=1,t0=0)

form <- ~ smf(time,knots=c(0,1,3,5))

t1 <- eval(substitute(time), data)
t0 <- eval(substitute(t0), data)
event <- eval(substitute(event), data)

# Setting up the model before fitting
model.c <- model.cons(form,lambda=0,data.spec=data,t1=t1,t1.name="time",
t0=rep(0,100),t0.name="t0",event=event,event.name="event",
expected=0,expected.name=NULL,type="overall",n.legendre=20,
cl="survPen(form,data,t1=time,event=event)",beta.ini=NULL)

# Estimating the smoothing parameter and the regression parameters
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# we need to apply a reparameterization to model.c before fitting
constructor <- repam(model.c)$build # model constructor
constructor$optim.rho <- 1 # we tell it we want to estimate the log smoothing parameters (rho)
Newton2 <- NR.rho(constructor,rho.ini=-1,data,form,nb.smooth=1,detail.rho=TRUE)

predict.survPen Hazard and Survival prediction from fitted survPen model

Description

Takes a fitted survPen object and produces hazard and survival predictions given a new set of values
for the model covariates.

Usage

## S3 method for class 'survPen'
predict(
object,
newdata,
newdata.ref = NULL,
n.legendre = 50,
conf.int = 0.95,
do.surv = TRUE,
type = "standard",
exclude.random = FALSE,
get.deriv.H = FALSE,
...

)

Arguments

object a fitted survPen object as produced by survPen.fit

newdata data frame giving the new covariates value
newdata.ref data frame giving the new covariates value for the reference population (used

only when type="HR")
n.legendre number of nodes to approximate the cumulative hazard by Gauss-Legendre quadra-

ture; default is 50
conf.int numeric value giving the precision of the confidence intervals; default is 0.95
do.surv If TRUE (the default), the survival (or cumulative ratio for type=’mult’) and its

lower and upper confidence values are computed. Survival computation requires
numerical integration and can be time-consuming so if you only want the hazard
use do.surv=FALSE; default is TRUE

type if type="lpmatrix" returns the design matrix (or linear predictor matrix) corre-
sponding to the new values of the covariates; if equals "HR", returns the pre-
dicted HR and survival difference (with CIs) between newdata and newdata.ref;
default is "standard" for classical hazard and survival estimation
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exclude.random if TRUE all random effects are set to zero; default is FALSE

get.deriv.H if TRUE, the derivatives wrt to the regression parameters of the cumulative haz-
ard are returned; default is FALSE

... other arguments

Details

The confidence intervals noted CI.U are built on the log cumulative hazard scale U=log(H) (efficient
scale in terms of respect towards the normality assumption) using Delta method. The confidence
intervals on the survival scale are then CI.surv = exp(-exp(CI.U))

Value

List of objects:

haz hazard predicted by the model

haz.inf lower value for the confidence interval of the hazard based on the Bayesian
covariance matrix Vp (Wood et al. 2016)

haz.sup Upper value for the confidence interval of the hazard based on the Bayesian
covariance matrix Vp

surv survival predicted by the model

surv.inf lower value for the confidence interval of the survival based on the Bayesian
covariance matrix Vp

surv.sup Upper value for the confidence interval of the survival based on the Bayesian
covariance matrix Vp

deriv.H derivatives wrt to the regression parameters of the cumulative hazard. Useful to
calculate standardized survival

HR predicted hazard ratio ; only when type = "HR"

HR.inf lower value for the confidence interval of the hazard ratio based on the Bayesian
covariance matrix Vp ; only when type = "HR"

HR.sup Upper value for the confidence interval of the hazard ratio based on the Bayesian
covariance matrix Vp ; only when type = "HR"

surv.diff predicted relative difference ; only when type = "HR"

surv.diff.inf lower value for the confidence interval of the survival difference based on the
Bayesian covariance matrix Vp ; only when type = "HR"

surv.diff.sup Upper value for the confidence interval of the survival difference based on the
Bayesian covariance matrix Vp ; only when type = "HR"

ratio relative mortality ratio predicted by the model ; only for relative mortality ratio
model (type="mult")

ratio.inf lower value for the confidence interval of the relative mortality ratio based on the
Bayesian covariance matrix Vp (Wood et al. 2016); only for relative mortality
ratio model (type="mult")

ratio.sup Upper value for the confidence interval of the relative mortality ratio on the
Bayesian covariance matrix Vp; only for relative mortality ratio model (type="mult")
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cumul.ratio cumulative relative mortality ratio predicted by the model ; only for relative
mortality ratio model (type="mult")

cumul.ratio.inf

lower value for the confidence interval of the cumulative relative mortality ratio
based on the Bayesian covariance matrix Vp (Wood et al. 2016); only for relative
mortality ratio model (type="mult")

cumul.ratio.sup

Upper value for the confidence interval of the cumulative relative mortality ratio
on the Bayesian covariance matrix Vp; only for relative mortality ratio model
(type="mult")

RR predicted ratio of relative mortality ratios ; only for relative mortality ratio model
when type = "HR"

RR.inf lower value for the confidence interval of the ratio of relative mortality ratios
based on the Bayesian covariance matrix Vp ; only for relative mortality ratio
model when type = "HR"

RR.sup Upper value for the confidence interval of the ratio of relative mortality ratios
based on the Bayesian covariance matrix Vp ; only for relative mortality ratio
model when type = "HR"

References

Wood, S.N., Pya, N. and Saefken, B. (2016), Smoothing parameter and model selection for general
smooth models (with discussion). Journal of the American Statistical Association 111, 1548-1575

Examples

library(survPen)
data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer

f1 <- ~tensor(fu,age,df=c(5,5))

# hazard model
mod1 <- survPen(f1,data=datCancer,t1=fu,event=dead,expected=NULL,method="LAML")

# predicting hazard and survival curves for age 60
nt <- seq(0,5,le=50)
pred <- predict(mod1,data.frame(fu=nt,age=60))
pred$haz
pred$surv

# predicting hazard ratio at 1 year according to age (with reference age of 50)
newdata1 <- data.frame(fu=1,age=seq(30,90,by=1))
newdata.ref1 <- data.frame(fu=1,age=rep(50,times=61))
predHR_1 <- predict(mod1,newdata=newdata1,newdata.ref=newdata.ref1,type="HR")
predHR_1$HR
predHR_1$HR.inf
predHR_1$HR.sup

# predicting hazard ratio at 3 years according to age (with reference age of 50)
# and difference of survival at 3 years
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newdata3 <- data.frame(fu=3,age=seq(30,90,by=1))
newdata.ref3 <- data.frame(fu=3,age=rep(50,times=61))
predHR_3 <- predict(mod1,newdata=newdata3,newdata.ref=newdata.ref3,type="HR")

# Hazard ratio
predHR_3$HR
predHR_3$HR.inf
predHR_3$HR.sup

# Difference of survival
predHR_3$diff.surv
predHR_3$diff.surv.inf
predHR_3$diff.surv.sup

predSNS Prediction of grouped indicators : population (net) survival (PNS) and
age-standardized (net) survival (SNS)

Description

Allows the prediction of population and age-standardized (net) survival as well as associated confi-
dence intervals

Usage

predSNS(
model,
time.points,
newdata,
weight.table,
var.name,
var.model,
conf.int = 0.95,
method = "exact",
n.legendre = 50

)

Arguments

model a fitted survPen model

time.points vector of follow-up values

newdata dataset containing the original age values used for fitting

weight.table dataset containing the age classes used for standardization, must be in the same
format as the elements of the following list list.wicss
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var.name list containing one element : the column name in newdata that reports age val-
ues. This element should be named after the age variable present in the model
formula. Typically, if newdata contains an ’age’ column while the model uses a
centered age ’agec’, the list should be: list(agec="age")

var.model list containing one element : the function that allows retrieving the age variable
used in model formula from original age. Typically for age centered on 50,
list(agec=function(age) age - 50)

conf.int numeric value giving the precision of the confidence intervals; default is 0.95

method should be either ’exact’ or ’approx’. The ’exact’ method uses all age values in
newdata for predictions. The ’approx’ method uses either newdata$age (if age
values are whole numbers) or floor(newdata$age) + 0.5 (if age values are not
whole numbers) and then removes duplicates to reduce computational cost.

n.legendre number of nodes to approximate the cumulative hazard by Gauss-Legendre quadra-
ture; default is 50

Details

The weight table used should always be in the same format as elements of list.wicss. Only age-
standardization is possible for now. All other variables necessary for model predictions should be
fixed to a single value. For simplicity, in what follows we will consider that survival only depends
on time and age.

Value

List of nine elements

class.table Number of individuals in each age class

SNS Vector of predicted age-standardized (net) survival

SNS.inf Lower bound of confidence intervals associated with predicted age-standardized
(net) survival

SNS.sup Upper bound of confidence intervals associated with predicted age-standardized
(net) survival

PNS Vector of predicted population (net) survival

PNS.inf Lower bound of confidence intervals associated with predicted population (net)
survival

PNS.sup Upper bound of confidence intervals associated with predicted population (net)
survival

PNS_per_class matrix of predicted population (net) survival in each age class
PNS_per_class.inf

Lower bound of confidence intervals associated with predicted population (net)
survival in each age class

PNS_per_class.sup

Upper bound of confidence intervals associated with predicted population (net)
survival in each age class
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Population Net Survival (PNS)

For a given group of individuals, PNS at time t is defined as

PNS(t) =
∑
i

1/n ∗ Si(t, ai)

where ai is the age of individual i

Standardized Net Survival (SNS)

SNS at time t is defined as
SNS(t) =

∑
i

wi ∗ Si(t, ai)

where ai is the age of individual i and wi = wrefj(i)/nj(i). wrefj(i) is the weigth of age class j
in the reference population (it corresponds to weight.table$AgeWeights). Where nj(i) is the total
number of individuals present in age class j(i): the age class of individual i.

Standardized Net Survival (SNS) with method="approx"

For large datasets, SNS calculation is quite heavy. To reduce computational cost, the idea is to
regroup individuals who have similar age values. By using floor(age) + 0.5 instead of age, the gain
will be substantial while the prediction error will be minimal (method="approx" will give slightly
different predictions compared to method="exact"). Of course, if the provided age values are whole
numbers then said provided age values will be used directly for grouping and there will be no
prediction error (method="approx" and method="exact" will give the exact same predictions).

SNS(t) =
∑
a

w̃a ∗ S(t, a)

The sum is here calculated over all possible values of age instead of all individuals. We have
w̃a = na∗wrefj(a)/nj(a). Where j(a) is the age class of age a while na is the number of individuals
with age a.

Variance and Confidence Intervals

Confidence intervals for SNS are derived assuming normality of log(log(-SNS)) Lower and upper
bound are given by

IC95%(SNS) = [SNS1.96∗
√

(V ar(Log(DeltaSNS)));SNS−1.96∗
√

(V ar(Log(DeltaSNS)))]

with
DeltaSNS = −log(SNS)

V ar(Log(DeltaSNS)) is derived by Delta method.

Confidence intervals for PNS are derived in the exact same way.

References

Corazziari, I., Quinn, M., & Capocaccia, R. (2004). Standard cancer patient population for age stan-
dardising survival ratios. European journal of cancer (Oxford, England : 1990), 40(15), 2307–2316.
https://doi.org/10.1016/j.ejca.2004.07.002.
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Examples

data(datCancer)
data(list.wicss)

don <- datCancer
don$agec <- don$age - 50 # using centered age for modelling

#-------------------- model with time and age

knots.t<-quantile(don$fu[don$dead==1],probs=seq(0,1,length=6)) # knots for time
knots.agec<-quantile(don$agec[don$dead==1],probs=seq(0,1,length=5)) # knots for age

formula <- as.formula(~tensor(fu,agec,df=c(length(knots.t),length(knots.agec)),
knots=list(fu=knots.t,age=knots.agec)))

mod <- survPen(formula,data=don,t1=fu,event=dead,n.legendre=20, expected=rate)

#-------------------- Age classes and associated weights for age-standardized
# net survival prediction

# weights of type 1
wicss <- list.wicss[["1"]]

# to estimate population net survival, prediction dataframe
# is needed. It should contain original data for age

pred.pop <- data.frame(age=don$age)

#-------------------- prediction : age-standardized net survival and population net survival

pred <- predSNS(mod,time.points=seq(0,5,by=0.1),newdata=pred.pop,
weight.table=wicss,var.name=list(agec="age"),
var.model=list(agec=function(age) age - 50),method="approx")

print.summary.survPen print summary for a survPen fit

Description

print summary for a survPen fit

Usage

## S3 method for class 'summary.survPen'
print(
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x,
digits = max(3, getOption("digits") - 2),
signif.stars = getOption("show.signif.stars"),
...

)

Arguments

x an object of class summary.survPen

digits controls number of digits printed in output.

signif.stars Should significance stars be printed alongside output.

... other arguments

Value

print of summary

pwcst Defining piecewise constant (excess) hazard in survPen formulae

Description

Used inside a formula object to define a piecewise constant (excess) hazard. This is useful since
it triggers an explicit calculation of cumulative hazard calculation (much more efficient and more
precise than Gauss-Legendre quadrature when hazard is constant). The breaks given are used to
defined sub-intervals that are left-open (except the first interval which is always left-closed) and
right-closed. Internally, this constructor uses the cut function on the follow-up time with options
include.lowest=TRUE and right=TRUE Important : this function must not be used with other time-
dependent effect functions because the Gauss-Legendre quadrature will not operate correctly. If you
really want to fit such a model, please use the cut function with the time variable as an argument to fit
a piecewise constant hazard (and do not forget to use a huge number of Gauss-Legendre quadrature
nodes, typically n.legendre=500)

Usage

pwcst(breaks)

Arguments

breaks numeric vector that specifies the boundaries of each sub-interval on which the
hazard is constant

Value

object of class pwcst.spec

pwcst.breaks numeric vector that specifies the boundaries of each sub-interval on which the
hazard is constant
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Examples

library(survPen)

data(datCancer)

# piece constant hazard on 6 sub-intervals : [0;0.5]; ]0.5;1]; ]1;2]; ]2;3]; ]3;4]; ]4;5]
formula <- ~pwcst(breaks=c(0,0.5,1,2,3,4,5))
mod <- survPen(formula,t1=fu,event=dead,data=datCancer)

# The same but in an inefficient way
formula2 <- ~cut(fu,breaks=c(0,0.5,1,2,3,4,5),include.lowest=TRUE,right=TRUE)
mod.inefficient <- survPen(formula2,t1=fu,event=dead,data=datCancer,n.legendre=500)

rd Defining random effects in survPen formulae

Description

Used inside a formula object to define a random effect.

Usage

rd(...)

Arguments

... Any number of covariates separated by ","

Value

object of class rd.smooth.spec

Examples

# cubic regression spline of time with 10 unspecified knots + random effect at the cluster level
formula.test <- ~smf(time,df=10) + rd(cluster)
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repam Applies initial reparameterization for stable evaluation of the log de-
terminant of the penalty matrix

Description

Transforms the object from model.cons by applying the matrix reparameterization (matrix U.F).
The reparameterization is reversed at convergence by inv.repam.

Usage

repam(build)

Arguments

build object as returned by model.cons

Value

build an object as returned by model.cons

X.ini initial design matrix (before reparameterization)

S.pen.ini initial penalty matrices

Examples

library(survPen)

# standard spline of time with 4 knots

data <- data.frame(time=seq(0,5,length=100),event=1,t0=0)

form <- ~ smf(time,knots=c(0,1,3,5))

t1 <- eval(substitute(time), data)
t0 <- eval(substitute(t0), data)
event <- eval(substitute(event), data)

# Setting up the model before fitting
model.c <- model.cons(form,lambda=0,data.spec=data,t1=t1,t1.name="time",
t0=rep(0,100),t0.name="t0",event=event,event.name="event",
expected=rep(0,100),expected.name=NULL,type="overall",n.legendre=20,
cl="survPen(form,data,t1=time,event=event)",beta.ini=NULL)

# Reparameterization allows separating the parameters into unpenalized and
# penalized ones for maximum numerical stability
re.model.c <- repam(model.c)
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robust.var Implementation of the robust variance Vr

Description

Takes the model at convergence and calculates the robust variance matrix accounting for correlated
survival times

Usage

robust.var(model, data, cluster.name, n.legendre = 50)

Arguments

model survPen object, see survPen.fit for details

data original dataset

cluster.name name of cluster variable in data

n.legendre number of nodes for Gauss-Legendre quadrature; default is 50

Value

survPen object with robust variance Vr

smf Defining smooths in survPen formulae

Description

Used inside a formula object to define a smooth, a tensor product smooth or a tensor product in-
teraction. Natural cubic regression splines (linear beyond the knots, equivalent to ns from package
splines) are used as marginal bases. While tensor builds a tensor product of marginal bases in-
cluding the intercepts, tint applies a tensor product of the marginal bases without their intercepts.
Unlike tensor, the marginal effects of the covariates should also be present in the formula when
using tint. For a conceptual difference between tensor products and tensor product interactions
see Section 5.6.3 from Wood (2017)

Usage

smf(..., knots = NULL, df = NULL, by = NULL, same.rho = FALSE)

tensor(..., knots = NULL, df = NULL, by = NULL, same.rho = FALSE)

tint(..., knots = NULL, df = NULL, by = NULL, same.rho = FALSE)
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Arguments

... Any number of covariates separated by ","

knots numeric vector that specifies the knots of the splines (including boundaries);
default is NULL, in which case the knots are spread through the covariate values
using quantiles. Precisely, for the term "smf(x,df=df1)", the vector of knots will
be: quantile(unique(x),seq(0,1,length=df1))

df numeric value that indicates the number of knots (or degrees of freedom) de-
sired; default is NULL. If knots and df are NULL, df will be set to 10

by numeric or factor variable in order to define a varying coefficient smooth

same.rho if the specified by variable is a factor, specifies whether the smoothing parame-
ters should be the same for all levels; default is FALSE.

Value

object of class smf.smooth.spec, tensor.smooth.spec or tint.smooth.spec (see smooth.spec
for details)

References

Wood, S. N. (2017), Generalized additive models: an introduction with R. Second Edition. London:
Chapman & Hall/CRC.

Examples

# penalized cubic regression spline of time with 5 unspecified knots
formula.test <- ~smf(time,df=5)

# suppose that we want to fit a model from formula.test
library(survPen)
data(datCancer)

mod.test <- survPen(~smf(fu,df=5) ,data=datCancer,t1=fu,event=dead)

# then the knots can be retrieved like this:
mod.test$list.smf[[1]]$knots
# or calculated like this
quantile(unique(datCancer$fu),seq(0,1,length=5))

# penalized cubic regression splines of time and age with respectively 5 and 7 unspecified knots
formula.test2 <- ~smf(time,df=5)+smf(age,df=7)

# penalized cubic regression splines of time and age with respectively 3 and 4 specified knots
formula.test3 <- ~smf(time,knots=c(0,3,5))+smf(age,knots=c(30,50,70,90))

# penalized tensor product for time and age with respectively 5 and 4 unspecified knots leading
# to 5*4 = 20 regression parameters
formula.test <- ~tensor(time,age,df=c(5,4))

# penalized tensor product for time and age with respectively 3 and 4 specified knots
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formula.test3 <- ~tensor(time,agec,knots=list(c(0,3,5),c(30,50,70,90)))

# penalized tensor product for time, age and year with respectively 6, 5 and 4 unspecified knots
formula.test <- ~tensor(time,age,year,df=c(6,5,4))

# penalized tensor product interaction for time and age with respectively 5 and 4 unspecified knots
# main effects are specified as penalized cubic regression splines
formula.test <- ~smf(time,df=5)+smf(age,df=4)+tint(time,age,df=c(5,4))

smooth.cons Design and penalty matrices of penalized splines in a smooth.spec ob-
ject

Description

Builds the design and penalty matrices from the result of smooth.spec.

Usage

smooth.cons(
term,
knots,
df,
by = NULL,
option,
data.spec,
same.rho = FALSE,
name

)

Arguments

term Vector of strings that generally comes from the value "term" of a smooth.spec
object.

knots List of numeric vectors that specifies the knots of the splines (including bound-
aries).

df Degrees of freedom: numeric vector that indicates the number of knots desired
for each covariate.

by numeric or factor variable in order to define a varying coefficient smooth; default
is NULL.

option "smf", "tensor" or "tint".
data.spec data frame that represents the environment from which the covariate values and

knots are to be calculated; default is NULL.
same.rho if there is a factor by variable, should the smoothing parameters be the same for

all levels; default is FALSE.
name simplified name of the smooth.spec call.
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Value

List of objects with the following items:

X Design matrix

pen List of penalty matrices

term Vector of strings giving the names of each covariate

knots list of numeric vectors that specifies the knots for each covariate

dim Number of covariates

all.df Numeric vector giving the number of knots associated with each covariate

sum.df Sum of all.df

Z.smf List of matrices that represents the sum-to-zero constraint to apply for "smf"
splines

Z.tensor List of matrices that represents the sum-to-zero constraint to apply for "tensor"
splines

Z.tint List of matrices that represents the sum-to-zero constraint to apply for "tint"
splines

lambda.name name of the smoothing parameters

Examples

library(survPen)

# standard spline of time with 4 knots (so we get a design matrix with 3 columns
# because of centering constraint)

data <- data.frame(time=seq(0,5,length=100))
smooth.c <- smooth.cons("time",knots=list(c(0,1,3,5)),df=4,option="smf",
data.spec=data,name="smf(time)")

smooth.cons.integral Design matrix of penalized splines in a smooth.spec object for Gauss-
Legendre quadrature

Description

Almost identical to smooth.cons. This version is dedicated to Gauss-Legendre quadrature. Here,
the sum-to-zero constraints must be specified so that they correspond to the ones that were calcu-
lated with the initial dataset.
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Usage

smooth.cons.integral(
term,
knots,
df,
by = NULL,
option,
data.spec,
Z.smf,
Z.tensor,
Z.tint,
name

)

Arguments

term Vector of strings that generally comes from the value "term" of a smooth.spec
object

knots List of numeric vectors that specifies the knots of the splines (including bound-
aries).

df Degrees of freedom : numeric vector that indicates the number of knots desired
for each covariate.

by numeric or factor variable in order to define a varying coefficient smooth; default
is NULL.

option "smf", "tensor" or "tint".

data.spec data frame that represents the environment from which the covariate values and
knots are to be calculated; default is NULL.

Z.smf List of matrices that represents the sum-to-zero constraint to apply for smf
splines.

Z.tensor List of matrices that represents the sum-to-zero constraint to apply for tensor
splines.

Z.tint List of matrices that represents the sum-to-zero constraint to apply for tint
splines.

name simplified name of the smooth.spec call.

Value

design matrix

Examples

library(survPen)

# standard spline of time with 4 knots (so we get a design matrix with 3 columns
# because of centering constraint)
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data <- data.frame(time=seq(0,5,length=100))

# retrieving sum-to-zero constraint matrices
Z.smf <- smooth.cons("time",knots=list(c(0,1,3,5)),df=4,option="smf",
data.spec=data,name="smf(time)")$Z.smf

# constructing the design matrices for Gauss-Legendre quadrature
smooth.c.int <- smooth.cons.integral("time",knots=list(c(0,1,3,5)),df=4,option="smf",data.spec=data,
name="smf(time)",Z.smf=Z.smf,Z.tensor=NULL,Z.tint=NULL)

smooth.spec Covariates specified as penalized splines

Description

Specifies the covariates to be considered as penalized splines.

Usage

smooth.spec(
...,
knots = NULL,
df = NULL,
by = NULL,
option = NULL,
same.rho = FALSE

)

Arguments

... Numeric vectors specified in smf, tensor or tint

knots List of numeric vectors that specifies the knots of the splines (including bound-
aries); default is NULL

df Degrees of freedom: numeric vector that indicates the number of knots desired
for each covariate; default is NULL

by numeric or factor variable in order to define a varying coefficient smooth; default
is NULL

option "smf", "tensor" or "tint". Depends on the wrapper function; default is "smf"

same.rho if there is a factor by variable, should the smoothing parameters be the same for
all levels; default is FALSE.
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Value

object of class smooth.spec

term Vector of strings giving the names of each covariate specified in ...

dim Numeric value giving the number of covariates associated with this spline

knots list of numeric vectors that specifies the knots for each covariate

df Numeric vector giving the number of knots associated with each covariate

by numeric or factor variable in order to define a varying coefficient smooth

same.rho if there is a factor by variable, should the smoothing parameters be the same for
all levels; default is FALSE

name simplified name of the call to function smooth.spec

Examples

library(survPen)

# standard spline of time with 10 unspecified knots
smooth.spec(time)

# tensor of time and age with 5*5 specified knots
smooth.s <- smooth.spec(time,age,knots=list(time=seq(0,5,length=5),age=seq(20,80,length=5)),
option="tensor")

splitmult Split original dataset at specified times to fit a multiplicative model

Description

This function allows splitting the original dataset in order to retrieve all the expected mortality rates
available according to each individual’s follow-up time. Typically, the expected mortality rates
come from national mortality tables and values are available for every combination of age and year
(often with 1-year increment).

Usage

splitmult(data, cut, start = NULL, end, event)

Arguments

data orginal datset

cut vector of timepoints to cut at (usually every year of follow-up)

start character string with name of start variable (will be created and set to zero if it
does not exist)

end character string with name of event time variable

event character string with name of censoring indicator
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Details

This function is close to the survsplit function proposed in relsurv package, but it is simpler since
fewer features are needed.

Value

split dataset with follow-up time split at specified times. An ’id_row’ column is added to identify
original row numbers

Examples

library(survPen)
data(datCancer)
data(expected.table)

#-------------------- creating split dataset for multiplicative model

splitdat <- splitmult(datCancer, cut = (1:5), end = "fu",
event = "dead")

#-------------------- merging with expected mortality table

# deriving current age and year (closest whole number)
splitdat$age_current <- floor(splitdat$age + splitdat$fu + 0.5)

splitdat$year_current <- floor(splitdat$yod + splitdat$fu + 0.5)

splitdat <- merge(splitdat, expected.table,
by.x=c("age_current","year_current"), by.y=c("Age","Year"),all.x=TRUE)

summary.survPen Summary for a survPen fit

Description

Takes a fitted survPen object and produces various useful summaries from it.

Usage

## S3 method for class 'survPen'
summary(object, ...)

Arguments

object a fitted survPen object as produced by survPen.fit

... other arguments
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Value

List of objects:

call the original survPen call

formula the original survPen formula

coefficients reports the regression parameters estimates for unpenalized terms with the asso-
ciated standard errors

HR_TAB reports the exponential of the regression parameters estimates for unpenalized
terms with the associated CI

edf.per.smooth reports the edf associated with each smooth term

random TRUE if there are random effects in the model

random.effects reports the estimates of the log standard deviation (log(sd)) of every random
effects plus the estimated standard error (also on the log(sd) scale)

likelihood unpenalized likelihood of the model
penalized.likelihood

penalized likelihood of the model

nb.smooth number of smoothing parameters
smoothing.parameter

smoothing parameters estimates

parameters number of regression parameters

edf effective degrees of freedom

method smoothing selection criterion used (LAML or LCV)

val.criterion minimized value of criterion. For LAML, what is reported is the negative log
marginal likelihood

converged convergence indicator, TRUE or FALSE. TRUE if Hess.beta.modif=FALSE and
Hess.rho.modif=FALSE (or NULL)

Examples

library(survPen)

data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer

# model : unidimensional penalized spline for time since diagnosis with 5 knots
f1 <- ~smf(fu,df=5)

# fitting hazard model
mod1 <- survPen(f1,data=datCancer,t1=fu,event=dead,expected=NULL,method="LAML")

# summary
summary(mod1)
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survPen (Excess) hazard model with (multidimensional) penalized splines and
integrated smoothness estimation

Description

Fits an (excess) hazard model with (multidimensional) penalized splines allowing for time-dependent
effects, non-linear effects and interactions between several continuous covariates. The linear pre-
dictor is specified on the logarithm of the (excess) hazard. Smooth terms are represented using
cubic regression splines with associated quadratic penalties. For multidimensional smooths, tensor
product splines or tensor product interactions are available. Smoothness is estimated automatically
by optimizing one of two criteria: Laplace approximate marginal likelihood (LAML) or likelihood
cross-validation (LCV). When specifying the model’s formula, no distinction is made between the
part relative to the form of the baseline hazard and the one relative to the effects of the covariates.
Thus, time-dependent effects are naturally specified as interactions with some function of time via
"*" or ":". See the examples below for more details. The main functions of the survPen package are
survPen, smf, tensor, tint and rd. The first one fits the model while the other four are construc-
tors for penalized splines.

The user must be aware that the survPen package does not depend on mgcv. Thus, all the func-
tionalities available in mgcv in terms of types of splines (such as thin plate regression splines or
P-splines) are not available in survPen (yet).

Usage

survPen(
formula,
data,
t1,
t0 = NULL,
event,
expected = NULL,
lambda = NULL,
rho.ini = NULL,
max.it.beta = 200,
max.it.rho = 30,
beta.ini = NULL,
detail.rho = FALSE,
detail.beta = FALSE,
n.legendre = NULL,
method = "LAML",
tol.beta = 1e-04,
tol.rho = 1e-04,
step.max = 5,
type = "overall",
cluster = NULL

)
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Arguments

formula formula object specifying the model. Penalized terms are specified using smf
(comparable to s(...,bs="cr") in mgcv), tensor (comparable to te(...,bs="cr")
in mgcv), tint (comparable to ti(...,bs="cr") in mgcv), or rd (comparable
to s(...,bs="re") in mgcv).

data an optional data frame containing the variables in the model
t1 vector of follow-up times or name of the column in data containing follow-up

times
t0 vector of origin times or name of the column in data containing origin times;

allows to take into account left truncation; default is NULL, in which case it will
be a vector of zeroes

event vector of right-censoring indicators or name of the column in data containing
right-censoring indicators; 1 if the event occurred and 0 otherwise

expected (for net survival only) vector of expected hazard or name of the column in data
containing expected hazard; default is NULL, in which case overall survival will
be estimated

lambda vector of smoothing parameters; default is NULL when it is to be estimated by
LAML or LCV

rho.ini vector of initial log smoothing parameters; default is NULL, in which case every
initial log lambda will be -1

max.it.beta maximum number of iterations to reach convergence in the regression parame-
ters; default is 200

max.it.rho maximum number of iterations to reach convergence in the smoothing parame-
ters; default is 30

beta.ini vector of initial regression parameters; default is NULL, in which case the first
beta will be log(sum(event)/sum(t1)) and the others will be zero (except if
there are "by" variables or if there is a piecewise constant hazard specification
in which cases all betas are set to zero)

detail.rho if TRUE, details concerning the optimization process in the smoothing parame-
ters are displayed; default is FALSE

detail.beta if TRUE, details concerning the optimization process in the regression parame-
ters are displayed; default is FALSE

n.legendre number of Gauss-Legendre quadrature nodes to be used to compute the cumu-
lative hazard; default is NULL. If not supplied the value is set to 20 for (excess)
hazard models and 10 for relative mortality ratio models

method criterion used to select the smoothing parameters. Should be "LAML" or "LCV";
default is "LAML"

tol.beta convergence tolerance for regression parameters; default is 1e-04. See NR.beta
for details

tol.rho convergence tolerance for smoothing parameters; default is 1e-04. See NR.rho
for details

step.max maximum absolute value possible for any component of the step vector (on the
log smoothing parameter scale) in LCV or LAML optimization; default is 5. If
necessary, consider lowering this value to achieve convergence
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type should be either ’overall’ for hazard regression, ’net’ for excess hazard regres-
sion, or ’mult’ for relative mortality ratio regression

cluster cluster variable for marginal hazard (intensity) models

Details

In time-to-event analysis, we may deal with one or several continuous covariates whose functional
forms, time-dependent effects and interaction structure are challenging. One possible way to deal
with these effects and interactions is to use the classical approximation of the survival likelihood
by a Poisson likelihood. Thus, by artificially splitting the data, the package mgcv can then be used
to fit penalized hazard models (Remontet et al. 2018). The problem with this option is that the
setup is rather complex and the method can fail with huge datasets (before splitting). Wood et al.
(2016) provided a general penalized framework that made available smooth function estimation to a
wide variety of models. They proposed to estimate smoothing parameters by maximizing a Laplace
approximate marginal likelihood (LAML) criterion and demonstrate how statistical consistency is
maintained by doing so. The survPen function implements the framework described by Wood et
al. (2016) for modelling time-to-event data without requiring data splitting and Poisson likelihood
approximation. The effects of continuous covariates are represented using low rank spline bases
with associated quadratic penalties. The survPen function allows to account simultaneously for
time-dependent effects, non-linear effects and interactions between several continuous covariates
without the need to build a possibly demanding model-selection procedure. Besides LAML, a
likelihood cross-validation (LCV) criterion (O Sullivan 1988) can be used for smoothing parameter
estimation. First and second derivatives of LCV with respect to the smoothing parameters are
implemented so that LCV optimization is computationally equivalent to the LAML optimization
proposed by Wood et al. (2016). In practice, LAML optimization is generally both a bit faster and a
bit more stable so it is used as default. For m covariates (x1, . . . , xm), if we note h(t, x1, . . . , xm)
the hazard at time t, the hazard model is the following :

log[h(t, x1, . . . , xm)] =
∑
j

gj(t, x1, . . . , xm)

where each gj is either the marginal basis of a specific covariate or a tensor product smooth of any
number of covariates. The marginal bases of the covariates are represented as natural (or restricted)
cubic splines (as in function ns from library splines) with associated quadratic penalties. Full
parametric (unpenalized) terms for the effects of covariates are also possible (see the examples be-
low). Each gj is then associated with zero, one or several smoothing parameters. The estimation
procedure is based on outer Newton-Raphson iterations for the smoothing parameters and on inner
Newton-Raphson iterations for the regression parameters (see Wood et al. 2016). Estimation of the
regression parameters in the inner algorithm is by direct maximization of the penalized likelihood
of the survival model, therefore avoiding data augmentation and Poisson likelihood approximation.
The cumulative hazard included in the log-likelihood is approximated by Gauss-Legendre quadra-
ture for numerical stability.

Value

Object of class "survPen" (see survPenObject for details)
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by variables

The smf, tensor and tint terms used to specify smooths accept an argument by. This by argu-
ment allows for building varying-coefficient models i.e. for letting smooths interact with factors or
parametric terms. If a by variable is numeric, then its ith element multiples the ith row of the model
matrix corresponding to the smooth term concerned. If a by variable is a factor then it generates an
indicator vector for each level of the factor, unless it is an ordered factor. In the non-ordered case,
the model matrix for the smooth term is then replicated for each factor level, and each copy has its
rows multiplied by the corresponding rows of its indicator variable. The smoothness penalties are
also duplicated for each factor level. In short a different smooth is generated for each factor level.
The main interest of by variables over separated models is the same.rho argument (for smf, tensor
and tint) which allows forcing all smooths to have the same smoothing parameter(s). Ordered by
variables are handled in the same way, except that no smooth is generated for the first level of the
ordered factor. This is useful if you are interested in differences from a reference level.

See the survival_analysis_with_survPen vignette for more details.

Random effects

i.i.d random effects can be specified using penalization. Indeed, the ridge penalty is equivalent to an
assumption that the regression parameters are i.i.d. normal random effects. Thus, it is easy to fit a
frailty hazard model. For example, consider the model term rd(clust) which will result in a model
matrix component corresponding to model.matrix(~clust-1) being added to the model matrix
for the whole model. The associated regression parameters are assumed i.i.d. normal, with unknown
variance (to be estimated). This assumption is equivalent to an identity penalty matrix (i.e. a ridge
penalty) on the regression parameters. The unknown smoothing parameter λ associated with the
term rd(clust) is directly linked to the unknown variance σ2: σ2 = 1

λ∗S.scale . Then, the estimated
log standard deviation is: log(σ̂) = −0.5∗ log(λ̂)−0.5∗ log(S.scale). And the estimated variance
of the log standard deviation is: V ar[log(σ̂)] = 0.25 ∗ V ar[log(λ̂)] = 0.25 ∗ inv.Hess.rho. See
the survival_analysis_with_survPen vignette for more details.

This approach allows implementing commonly used random effect structures. For example if g is
a factor then rd(g) produces a random parameter for each level of g, the random parameters being
i.i.d. normal. If g is a factor and x is numeric, then rd(g,x) produces an i.i.d. normal random slope
relating the response to x for each level of g. Thus, random effects treated as penalized splines allow
specifying frailty (excess) hazard models (Charvat et al. 2016). For each individual i from cluster
(usually geographical unit) j, a possible model would be:

log[h(tij , xij1, . . . , xijm)] =
∑
k

gk(tij , xij1, . . . , xijm) + wj

where w_j follows a normal distribution with mean 0. The random effect associated with the cluster
variable is specified with the model term rd(cluster). We could also specify a random effect
depending on age for example with the model term rd(cluster,age). u_j = exp(w_j) is known
as the shared frailty.

See the survival_analysis_with_survPen vignette for more details.

Excess hazard model

When studying the survival of patients who suffer from a common pathology we may be interested
in the concept of excess mortality that represents the mortality due to that pathology. For example,
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in cancer epidemiology, individuals may die from cancer or from another cause. The problem is
that the cause of death is often either unavailable or unreliable. Supposing that the mortality due
to other causes may be obtained from the total mortality of the general population (called expected
mortality for cancer patients), we can define the concept of excess mortality. The excess mortality is
directly linked to the concept of net survival, which would be the observed survival if patients could
not die from other causes. Therefore, when such competing events are present, one may choose to
fit an excess hazard model instead of a classical hazard model. Flexible excess hazard models have
already been proposed (for examples see Remontet et al. 2007, Charvat et al. 2016) but none of
them deals with a penalized framework (in a non-fully Bayesian setting). Excess mortality can be
estimated supposing that, in patients suffering from a common pathology, mortality due to others
causes than the pathology can be obtained from the (all cause) mortality of the general population;
the latter is referred to as the expected mortality hP . The mortality observed in the patients (hO)
is actually decomposed as the sum of hP and the excess mortality due to the pathology (hE). This
may be written as:

hO(t, x) = hE(t, x) + hP (a+ t, z)

In that equation, t is the time since cancer diagnosis, a is the age at diagnosis, hP is the mortality of
the general population at age a+ t given demographical characteristics z (hP is considered known
and available from national statistics), and x a vector of variables that may have an effect on hE .
Including the age in the model is necessary in order to deal with the informative censoring due
to other causes of death. Thus, for m covariates (x1, . . . , xm), if we note hE(t, x1, . . . , xm) the
excess hazard at time t, the excess hazard model is the following:

log[hE(t, x1, . . . , xm)] =
∑
j

gj(t, x1, . . . , xm)

Relative mortality ratio model

Another important feature of the survPen package is that it allows fitting penalized relative mortal-
ity ratio models.

As we discussed above, the excess mortality setting considers that the mortality (all causes) ob-
served in the patients (hO) is actually decomposed as the sum of the expected mortality hP and the
excess mortality due to the pathology (hE).

This may be written as:
hO(t, x) = hE(t, x) + hP (a+ t, z)

One limitation of such a decomposition is that hE is considered positive. Indeed, sometimes this
assumption is not met. For example, in prostate cancer patients with low stages at diagnosis, we
observe an ’undermortality’ due to selection effects and better overall medical care. In that case,
the excess mortality is actually neagtive and the net survival setting fails to describe the reality of
those patients. Besides, the excess mortality setting considers the studied disease as an independent
cause of death (conditionally on the covariates) compared to the other causes. This point of view
is not usely considered in multiple sclerosis epidemiology for example, where the disease is seen
as a comorbidity impacting all pre- existing causes of death. In that case, the observed hazard is
decomposed as product of population hazard and a relative mortality ratio r

This may be written as:
hO(t, x) = r(t, x) ∗ hP (a+ t, z)

This decomposition was first proposed in a modelling framework by Andersen et al. (1985). How-
ever Andersen’s model was a non-flexible semi-parametric model.
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The survPen package allows modelling the relative mortality ratio r as a multidimensional function
of time and covariates. For m covariates (x1, . . . , xm), if we note r(t, x1, . . . , xm) the relative
mortality ratio at time t, the model is as follows:

log[r(t, x1, . . . , xm)] =
∑
j

gj(t, x1, . . . , xm)

Where the gj functions may be penalized unidimensional or penalized tensor product splines. All
features described for the (excess) hazard setting still apply when fitting a relative mortality ratio
model. One difference lies in the predictions. With a fitted relative mortality ratio model, you can
only retrieve the relative mortality ratio and cumulative relative mortality ratio predictions (with
CIs), as well as the ratios of realtive mortality ratio (with type=’HR’). No survival prediction (let
alone survival difference) will be directly available because its calculation depends on expected
mortality rates.

Finally, one important difference between an excess hazard model and relative mortality ratio model
is data preparation. For an excess hazard model we only need individual data with expected mor-
tality rate at the time of death. Whereas in a relative mortality ratio model, the contribution to an
individual to the likelihood requires all possible expected mortality rate values during the entire
follow-up. Therefore, since the expected mortality rates come from national mortality tables usu-
ally available in 1-year intervals, we need to split the original dataset as many times as there are
1-year intervals during each individual’s follow-up. The function splitmult will help you getting
the splitdataset from the original one.

See the survival_analysis_with_survPen vignette for more details and an example of analysis.

Marginal hazard (intensity) models with robust standard errors

In presence of correlated time-to-event data (for example recurrent event data), robust standard
errors accounting for said correlation need to be derived. The ‘survPen‘ package allows deriving
such robust standard errors based on sandwich estimators (often called Huber sandwich estimator,
see also Coz et al. submitted to Biostatistics, for an example in the recurrent event setting).

The user only needs to specify the ‘cluster‘ variable defining the statistical units for which repeated
observations are available. This specification is performed via the ‘cluster‘ argument.

See the survival_analysis_with_survPen vignette for more details and an example of analysis.

Convergence

No convergence indicator is given. If the function returns an object of class survPen, it means
that the algorithm has converged. If convergence issues occur, an error message is displayed. If
convergence issues occur, do not refrain to use detail.rho and/or detail.beta to see exactly what is
going on in the optimization process. To achieve convergence, consider lowering step.max and/or
changing rho.ini and beta.ini. If your excess hazard model fails to converge, consider fitting a hazard
model and use its estimated parameters as initial values for the excess hazard model. Finally, do not
refrain to change the "method" argument (LCV or LAML) if convergence issues occur.

Other

Be aware that all character variables are transformed to factors before fitting.
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Examples

library(survPen)
data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer

#-------------------------------------------------------- example 0
# Comparison between restricted cubic splines and penalized restricted cubic splines

library(splines)

# unpenalized
f <- ~ns(fu,knots=c(0.25, 0.5, 1, 2, 4),Boundary.knots=c(0,5))

mod <- survPen(f,data=datCancer,t1=fu,event=dead)
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# penalized
f.pen <- ~ smf(fu,knots=c(0,0.25, 0.5, 1, 2, 4,5)) # careful here: the boundary knots are included

mod.pen <- survPen(f.pen,data=datCancer,t1=fu,event=dead)

# predictions

new.time <- seq(0,5,length=100)
pred <- predict(mod,data.frame(fu=new.time))
pred.pen <- predict(mod.pen,data.frame(fu=new.time))

par(mfrow=c(1,1))
plot(new.time,pred$haz,type="l",ylim=c(0,0.2),main="hazard vs time",
xlab="time since diagnosis (years)",ylab="hazard",col="red")
lines(new.time,pred.pen$haz,col="blue3")
legend("topright",legend=c("unpenalized","penalized"),
col=c("red","blue3"),lty=rep(1,2))

#-------------------------------------------------------- example 1
# hazard models with unpenalized formulas compared to a penalized tensor product smooth

library(survPen)
data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer

# constant hazard model
f.cst <- ~1
mod.cst <- survPen(f.cst,data=datCancer,t1=fu,event=dead)

# piecewise constant hazard model
f.pwcst <- ~pwcst(breaks=seq(0,5,by=0.5))
mod.pwcst <- survPen(f.pwcst,data=datCancer,t1=fu,event=dead)

# linear effect of time
f.lin <- ~fu
mod.lin <- survPen(f.lin,data=datCancer,t1=fu,event=dead)

# linear effect of time and age with proportional effect of age
f.lin.age <- ~fu+age
mod.lin.age <- survPen(f.lin.age,data=datCancer,t1=fu,event=dead)

# linear effect of time and age with time-dependent effect of age (linear)
f.lin.inter.age <- ~fu*age
mod.lin.inter.age <- survPen(f.lin.inter.age,data=datCancer,t1=fu,event=dead)

# cubic B-spline of time with a knot at 1 year, linear effect of age and time-dependent effect
# of age with a quadratic B-spline of time with a knot at 1 year
library(splines)
f.spline.inter.age <- ~bs(fu,knots=c(1),Boundary.knots=c(0,5))+age+
age:bs(fu,knots=c(1),Boundary.knots=c(0,5),degree=2)
# here, bs indicates an unpenalized cubic spline
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mod.spline.inter.age <- survPen(f.spline.inter.age,data=datCancer,t1=fu,event=dead)

# tensor of time and age
f.tensor <- ~tensor(fu,age)
mod.tensor <- survPen(f.tensor,data=datCancer,t1=fu,event=dead)

# predictions of the models at age 60

new.time <- seq(0,5,length=100)
pred.cst <- predict(mod.cst,data.frame(fu=new.time))
pred.pwcst <- predict(mod.pwcst,data.frame(fu=new.time))
pred.lin <- predict(mod.lin,data.frame(fu=new.time))
pred.lin.age <- predict(mod.lin.age,data.frame(fu=new.time,age=60))
pred.lin.inter.age <- predict(mod.lin.inter.age,data.frame(fu=new.time,age=60))
pred.spline.inter.age <- predict(mod.spline.inter.age,data.frame(fu=new.time,age=60))
pred.tensor <- predict(mod.tensor,data.frame(fu=new.time,age=60))

lwd1 <- 2

par(mfrow=c(1,1))
plot(new.time,pred.cst$haz,type="l",ylim=c(0,0.2),main="hazard vs time",
xlab="time since diagnosis (years)",ylab="hazard",col="blue3",lwd=lwd1)
segments(x0=new.time[1:99],x1=new.time[2:100],y0=pred.pwcst$haz[1:99],col="lightblue2",lwd=lwd1)
lines(new.time,pred.lin$haz,col="green3",lwd=lwd1)
lines(new.time,pred.lin.age$haz,col="yellow",lwd=lwd1)
lines(new.time,pred.lin.inter.age$haz,col="orange",lwd=lwd1)
lines(new.time,pred.spline.inter.age$haz,col="red",lwd=lwd1)
lines(new.time,pred.tensor$haz,col="black",lwd=lwd1)
legend("topright",
legend=c("cst","pwcst","lin","lin.age","lin.inter.age","spline.inter.age","tensor"),
col=c("blue3","lightblue2","green3","yellow","orange","red","black"),
lty=rep(1,7),lwd=rep(lwd1,7))

# you can also calculate the hazard yourself with the lpmatrix option.
# For example, compare the following predictions:
haz.tensor <- pred.tensor$haz

X.tensor <- predict(mod.tensor,data.frame(fu=new.time,age=60),type="lpmatrix")
haz.tensor.lpmatrix <- exp(X.tensor%mult%mod.tensor$coefficients)

summary(haz.tensor.lpmatrix - haz.tensor)

#---------------- The 95% confidence intervals can be calculated like this:

# standard errors from the Bayesian covariance matrix Vp
std <- sqrt(rowSums((X.tensor%mult%mod.tensor$Vp)*X.tensor))

qt.norm <- stats::qnorm(1-(1-0.95)/2)
haz.inf <- as.vector(exp(X.tensor%mult%mod.tensor$coefficients-qt.norm*std))
haz.sup <- as.vector(exp(X.tensor%mult%mod.tensor$coefficients+qt.norm*std))
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# checking that they are similar to the ones given by the predict function
summary(haz.inf - pred.tensor$haz.inf)
summary(haz.sup - pred.tensor$haz.sup)

#-------------------------------------------------------- example 2

library(survPen)
data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer

# model : unidimensional penalized spline for time since diagnosis with 5 knots
f1 <- ~smf(fu,df=5)
# when knots are not specified, quantiles are used. For example, for the term "smf(x,df=df1)",
# the vector of knots will be: quantile(unique(x),seq(0,1,length=df1))

# you can specify your own knots if you want
# f1 <- ~smf(fu,knots=c(0,1,3,6,8))

# hazard model
mod1 <- survPen(f1,data=datCancer,t1=fu,event=dead,expected=NULL,method="LAML")
summary(mod1)

# to see where the knots were placed
mod1$list.smf

# with LCV instead of LAML
mod1bis <- survPen(f1,data=datCancer,t1=fu,event=dead,expected=NULL,method="LCV")
summary(mod1bis)

# hazard model taking into account left truncation (not representative of cancer data,
# the begin variable was simulated for illustration purposes only)
mod2 <- survPen(f1,data=datCancer,t0=begin,t1=fu,event=dead,expected=NULL,method="LAML")
summary(mod2)

# excess hazard model
mod3 <- survPen(f1,data=datCancer,t1=fu,event=dead,expected=rate,method="LAML")
summary(mod3)

# compare the predictions of the models
new.time <- seq(0,5,length=50)
pred1 <- predict(mod1,data.frame(fu=new.time))
pred1bis <- predict(mod1bis,data.frame(fu=new.time))
pred2 <- predict(mod2,data.frame(fu=new.time))
pred3 <- predict(mod3,data.frame(fu=new.time))

# LAML vs LCV
par(mfrow=c(1,2))
plot(new.time,pred1$haz,type="l",ylim=c(0,0.2),main="LCV vs LAML",
xlab="time since diagnosis (years)",ylab="hazard")
lines(new.time,pred1bis$haz,col="blue3")
legend("topright",legend=c("LAML","LCV"),col=c("black","blue3"),lty=c(1,1))
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plot(new.time,pred1$surv,type="l",ylim=c(0,1),main="LCV vs LAML",
xlab="time since diagnosis (years)",ylab="survival")
lines(new.time,pred1bis$surv,col="blue3")

# hazard vs excess hazard
par(mfrow=c(1,2))
plot(new.time,pred1$haz,type="l",ylim=c(0,0.2),main="hazard vs excess hazard",
xlab="time since diagnosis (years)",ylab="hazard")
lines(new.time,pred3$haz,col="green3")
legend("topright",legend=c("overall","excess"),col=c("black","green3"),lty=c(1,1))

plot(new.time,pred1$surv,type="l",ylim=c(0,1),main="survival vs net survival",
xlab="time",ylab="survival")
lines(new.time,pred3$surv,col="green3")
legend("topright",legend=c("overall survival","net survival"), col=c("black","green3"), lty=c(1,1))

# hazard vs excess hazard with 95% Bayesian confidence intervals (based on Vp matrix,
# see predict.survPen)
par(mfrow=c(1,1))
plot(new.time,pred1$haz,type="l",ylim=c(0,0.2),main="hazard vs excess hazard",
xlab="time since diagnosis (years)",ylab="hazard")
lines(new.time,pred3$haz,col="green3")
legend("topright",legend=c("overall","excess"),col=c("black","green3"),lty=c(1,1))

lines(new.time,pred1$haz.inf,lty=2)
lines(new.time,pred1$haz.sup,lty=2)

lines(new.time,pred3$haz.inf,lty=2,col="green3")
lines(new.time,pred3$haz.sup,lty=2,col="green3")

#-------------------------------------------------------- example 3

library(survPen)
data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer

# models: tensor product smooth vs tensor product interaction of time since diagnosis and
# age at diagnosis. Smoothing parameters are estimated via LAML maximization
f2 <- ~tensor(fu,age,df=c(5,5))

f3 <- ~tint(fu,df=5)+tint(age,df=5)+tint(fu,age,df=c(5,5))

# hazard model
mod4 <- survPen(f2,data=datCancer,t1=fu,event=dead)
summary(mod4)

mod5 <- survPen(f3,data=datCancer,t1=fu,event=dead)
summary(mod5)

# predictions
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new.age <- seq(50,90,length=50)
new.time <- seq(0,7,length=50)

Z4 <- outer(new.time,new.age,function(t,a) predict(mod4,data.frame(fu=t,age=a))$haz)
Z5 <- outer(new.time,new.age,function(t,a) predict(mod5,data.frame(fu=t,age=a))$haz)

# color settings
col.pal <- colorRampPalette(c("white", "red"))
colors <- col.pal(100)

facet <- function(z){

facet.center <- (z[-1, -1] + z[-1, -ncol(z)] + z[-nrow(z), -1] + z[-nrow(z), -ncol(z)])/4
cut(facet.center, 100)

}

# plot the hazard surfaces for both models
par(mfrow=c(1,2))
persp(new.time,new.age,Z4,col=colors[facet(Z4)],main="tensor",theta=30,
xlab="time since diagnosis",ylab="age at diagnosis",zlab="excess hazard",ticktype="detailed")
persp(new.time,new.age,Z5,col=colors[facet(Z5)],main="tint",theta=30,
xlab="time since diagnosis",ylab="age at diagnosis",zlab="excess hazard",ticktype="detailed")

#-------------------------------------------------------- example 4

library(survPen)
data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer

# model : tensor product spline for time, age and yod (year of diagnosis)
# yod is not centered here since it does not create unstability but be careful in practice
# and consider centering your covariates if you encounter convergence issues
f4 <- ~tensor(fu,age,yod,df=c(5,5,5))

# excess hazard model
mod6 <- survPen(f4,data=datCancer,t1=fu,event=dead,expected=rate)
summary(mod6)

# predictions of the surfaces for ages 50, 60, 70 and 80
new.year <- seq(1990,2010,length=30)
new.time <- seq(0,5,length=50)

Z_50 <- outer(new.time,new.year,function(t,y) predict(mod6,data.frame(fu=t,yod=y,age=50))$haz)
Z_60 <- outer(new.time,new.year,function(t,y) predict(mod6,data.frame(fu=t,yod=y,age=60))$haz)
Z_70 <- outer(new.time,new.year,function(t,y) predict(mod6,data.frame(fu=t,yod=y,age=70))$haz)
Z_80 <- outer(new.time,new.year,function(t,y) predict(mod6,data.frame(fu=t,yod=y,age=80))$haz)

# plot the hazard surfaces for a given age
par(mfrow=c(2,2))
persp(new.time,new.year,Z_50,col=colors[facet(Z_50)],main="age 50",theta=20,
xlab="time since diagnosis",ylab="yod",zlab="excess hazard",ticktype="detailed")
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persp(new.time,new.year,Z_60,col=colors[facet(Z_60)],main="age 60",theta=20,
xlab="time since diagnosis",ylab="yod",zlab="excess hazard",ticktype="detailed")
persp(new.time,new.year,Z_70,col=colors[facet(Z_70)],main="age 70",theta=20,
xlab="time since diagnosis",ylab="yod",zlab="excess hazard",ticktype="detailed")
persp(new.time,new.year,Z_80,col=colors[facet(Z_80)],main="age 80",theta=20,
xlab="time since diagnosis",ylab="yod",zlab="excess hazard",ticktype="detailed")

########################################

survPen.fit (Excess) hazard model with multidimensional penalized splines for
given smoothing parameters

Description

Fits an (excess) hazard model. If penalized splines are present, the smoothing parameters are spec-
ified.

Usage

survPen.fit(
build,
data,
formula,
max.it.beta = 200,
beta.ini = NULL,
detail.beta = FALSE,
method = "LAML",
tol.beta = 1e-04

)

Arguments

build list of objects returned by model.cons

data an optional data frame containing the variables in the model

formula formula object specifying the model

max.it.beta maximum number of iterations to reach convergence in the regression parame-
ters; default is 200

beta.ini vector of initial regression parameters; default is NULL, in which case the first
beta will be log(sum(event)/sum(t1)) and the others will be zero (except if
there are "by" variables or if there is a piecewise constant hazard specification
in which cases all betas are set to zero)

detail.beta if TRUE, details concerning the optimization process in the regression parame-
ters are displayed; default is FALSE
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method criterion used to select the smoothing parameters. Should be "LAML" or "LCV";
default is "LAML"

tol.beta convergence tolerance for regression parameters; default is 1e-04. See NR.beta
for details

Value

Object of class "survPen" (see survPenObject for details)

Examples

library(survPen)

# standard spline of time with 4 knots

data <- data.frame(time=seq(0,5,length=100),event=1,t0=0)

form <- ~ smf(time,knots=c(0,1,3,5))

t1 <- eval(substitute(time), data)
t0 <- eval(substitute(t0), data)
event <- eval(substitute(event), data)

# Setting up the model before fitting
model.c <- model.cons(form,lambda=0,data.spec=data,t1=t1,t1.name="time",
t0=rep(0,100),t0.name="t0",event=event,event.name="event",
expected=rep(0,100),expected.name=NULL,type="overall",n.legendre=20,
cl="survPen(form,data,t1=time,event=event)",beta.ini=NULL)

# fitting
mod <- survPen.fit(model.c,data,form)

survPenObject Fitted survPen object

Description

A fitted survPen object returned by function survPen and of class "survPen". Method functions
predict and summary are available for this class.

Value

A survPen object has the following elements:

call original survPen call

formula formula object specifying the model

t0.name name of the vector of origin times
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t1.name name of the vector of follow-up times

event.name name of the vector of right-censoring indicators

expected.name name of the vector of expected hazard

haz fitted hazard

coefficients estimated regression parameters. Unpenalized parameters are first, followed by
the penalized ones

type "net" for net survival estimation with penalized excess hazard model, "overall"
for overall survival with penalized hazard model, or "mult" for penalized relative
mortality ratio model

df.para degrees of freedom associated with fully parametric terms (unpenalized)

df.smooth degrees of freedom associated with penalized terms

p number of regression parameters

edf effective degrees of freedom

edf1 alternative effective degrees of freedom ; used as an upper bound for edf2

edf2 effective degrees of freedom corrected for smoothing parameter uncertainty

aic Akaike information criterion with number of parameters replaced by edf when
there are penalized terms. Corresponds to 2*edf - 2*ll.unpen

aic2 Akaike information criterion corrected for smoothing parameter uncertainty.
Be careful though, this is still a work in progress, especially when one of the
smoothing parameters tends to infinity.

iter.beta vector of numbers of iterations needed to estimate the regression parameters for
each smoothing parameters trial. It thus contains iter.rho+1 elements.

X design matrix of the model

S penalty matrix of the model

S.scale vector of rescaling factors for the penalty matrices

S.list Equivalent to pen but with every element multiplied by its associated smoothing
parameter

S.smf List of penalty matrices associated with all "smf" calls

S.tensor List of penalty matrices associated with all "tensor" calls

S.tint List of penalty matrices associated with all "tint" calls

S.rd List of penalty matrices associated with all "rd" calls
smooth.name.smf

List of names for the "smf" calls associated with S.smf
smooth.name.tensor

List of names for the "tensor" calls associated with S.tensor
smooth.name.tint

List of names for the "tint" calls associated with S.tint

smooth.name.rd List of names for the "rd" calls associated with S.rd

S.pen List of all the rescaled penalty matrices redimensioned to df.tot size. Every
element of S.pen noted S.pen[[i]] is made from a penalty matrix pen[[i]]
returned by smooth.cons and is multiplied by S.scale
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grad.unpen.beta

gradient vector of the log-likelihood with respect to the regression parameters

grad.beta gradient vector of the penalized log-likelihood with respect to the regression
parameters

Hess.unpen.beta

hessian of the log-likelihood with respect to the regression parameters

Hess.beta hessian of the penalized log-likelihood with respect to the regression parameters
Hess.beta.modif

if TRUE, the hessian of the penalized log-likelihood has been perturbed at con-
vergence

ll.unpen log-likelihood at convergence

ll.pen penalized log-likelihood at convergence

deriv.rho.beta transpose of the Jacobian of beta with respect to the log smoothing parameters
deriv.rho.inv.Hess.beta

list containing the derivatives of the inverse of Hess with respect to the log
smoothing parameters

deriv.rho.Hess.unpen.beta

list containing the derivatives of Hess.unpen with respect to the log smoothing
parameters

lambda estimated or given smoothing parameters

nb.smooth number of smoothing parameters

iter.rho number of iterations needed to estimate the smoothing parameters

optim.rho identify whether the smoothing parameters were estimated or not; 1 when exit-
ing the function NR.rho; default is NULL

method criterion used for smoothing parameter estimation

criterion.val value of the criterion used for smoothing parameter estimation at convergence

LCV Likelihood cross-validation criterion at convergence

LAML negative Laplace approximate marginal likelihood at convergence

grad.rho gradient vector of criterion with respect to the log smoothing parameters

Hess.rho hessian matrix of criterion with respect to the log smoothing parameters

inv.Hess.rho inverse of Hess.rho

Hess.rho.modif if TRUE, the hessian of LCV or LAML has been perturbed at convergence

Ve Frequentist covariance matrix

Vr Robust frequentist covariance matrix accounting for correlated survival times

Vp Bayesian covariance matrix

Vc Bayesian covariance matrix corrected for smoothing parameter uncertainty (see
Wood et al. 2016)

Vc.approx Kass and Steffey approximation of Vc (see Wood et al. 2016)

Z.smf List of matrices that represents the sum-to-zero constraint to apply for smf
splines



64 tensor.in

Z.tensor List of matrices that represents the sum-to-zero constraint to apply for tensor
splines

Z.tint List of matrices that represents the sum-to-zero constraint to apply for tint
splines

list.smf List of all smf.smooth.spec objects contained in the model

list.tensor List of all tensor.smooth.spec objects contained in the model

list.tint List of all tint.smooth.spec objects contained in the model

list.rd List of all rd.smooth.spec objects contained in the model

U.F Eigen vectors of S.F, useful for the initial reparameterization to separate penal-
ized ad unpenalized subvectors. Allows stable evaluation of the log determinant
of S and its derivatives

is.pwcst TRUE if there is a piecewise constant (excess) hazard specification. In that case
the cumulative hazard can be derived without Gauss-Legendre quadrature

pwcst.breaks if is.pwcst is TRUE, vector of breaks defining the sub-intervals on which the
hazard is constant. Otherwise NULL.

factor.structure

List containing the levels and classes of all factor variables present in the data
frame used for fitting

converged convergence indicator, TRUE or FALSE. TRUE if Hess.beta.modif=FALSE and
Hess.rho.modif=FALSE (or NULL)

References

Wood, S.N., Pya, N. and Saefken, B. (2016), Smoothing parameter and model selection for general
smooth models (with discussion). Journal of the American Statistical Association 111, 1548-1575

tensor.in tensor model matrix for two marginal bases

Description

Function called recursively inside tensor.prod.X.

Usage

tensor.in(X1, X2)

Arguments

X1 first marginal design matrix with n rows and p1 columns

X2 first marginal design matrix with n rows and p2 columns

Value

Matrix of dimensions n*(p1*p2) representing the row tensor product of the matrices X1 and X2
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Examples

library(survPen)

# row-wise tensor product between two design matrices
set.seed(15)

X1 <- matrix(rnorm(10*3),nrow=10,ncol=3)
X2 <- matrix(rnorm(10*2),nrow=10,ncol=2)
tensor.in(X1,X2)

tensor.prod.S Tensor product for penalty matrices

Description

Computes the penalty matrices of a tensor product smooth from the marginal penalty matrices. The
code is from function tensor.prod.penalties in mgcv package.

Usage

tensor.prod.S(S)

Arguments

S list of m marginal penalty matrices

Value

TS List of the penalty matrices associated with the tensor product smooth

Examples

library(survPen)

# tensor product between three penalty matrices
set.seed(15)

S1 <- matrix(rnorm(3*3),nrow=3,ncol=3)
S2 <- matrix(rnorm(2*2),nrow=2,ncol=2)

S1 <- 0.5*(S1 + t(S1) ) ; S2 <- 0.5*(S2 + t(S2) )

tensor.prod.S(list(S1,S2))
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tensor.prod.X tensor model matrix

Description

Computes the model matrix of tensor product smooth from the marginal bases.

Usage

tensor.prod.X(X)

Arguments

X list of m design matrices with n rows and p1, p2, ... pm columns respectively

Value

T Matrix of dimensions n*(p1*p2*...*pm) representing the row tensor product of
the matrices in X

Examples

library(survPen)

# row-wise tensor product between three design matrices
set.seed(15)

X1 <- matrix(rnorm(10*3),nrow=10,ncol=3)
X2 <- matrix(rnorm(10*2),nrow=10,ncol=2)
X3 <- matrix(rnorm(10*2),nrow=10,ncol=2)
tensor.prod.X(list(X1,X2,X3))

%cross% Matrix cross-multiplication between two matrices

Description

Matrix cross-multiplication between two matrices

Usage

Mat1 %cross% Mat2

Arguments

Mat1 a matrix.
Mat2 another matrix.
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Value

prod the product t(Mat1)

%mult% Matrix multiplication between two matrices

Description

Matrix multiplication between two matrices

Usage

Mat1 %mult% Mat2

Arguments

Mat1 a matrix.

Mat2 another matrix.

Value

prod the product Mat1

%vec% Matrix multiplication between a matrix and a vector

Description

Matrix multiplication between a matrix and a vector

Usage

Mat %vec% vec

Arguments

Mat a matrix.

vec a vector.

Value

prod the product Mat
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