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bertinplot Plot a Bertin Matrix

Description

Plot a data matrix of cases and variables. Each value is represented by a symbol. Large values are
highlighted. Note that Bertin arranges the cases horizontally and the variables as rows. The matrix
can be rearranged using seriation techniques to make structure in the data visible (see Falguerolles
et al 1997).

Usage

bertinplot(
x,
order = NULL,
panel.function = panel.bars,
highlight = TRUE,
row_labels = TRUE,
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col_labels = TRUE,
flip_axes = TRUE,
...

)

panel.bars(value, spacing, hl)

panel.circles(value, spacing, hl)

panel.rectangles(value, spacing, hl)

panel.squares(value, spacing, hl)

panel.tiles(value, spacing, hl)

panel.blocks(value, spacing, hl)

panel.lines(value, spacing, hl)

bertin_cut_line(x = NULL, y = NULL, col = "red")

ggbertinplot(
x,
order = NULL,
geom = "bar",
highlight = TRUE,
row_labels = TRUE,
col_labels = TRUE,
flip_axes = TRUE,
prop = FALSE,
...

)

Arguments

x a data matrix. Note that following Bertin, columns are variables and rows are
cases. This behavior can be reversed using reverse = TRUE in options.

order an object of class ser_permutation to rearrange x before plotting. If NULL, no
rearrangement is performed.

panel.function a function to produce the symbols. Currently available functions are panel.bars
(default), panel.circles, panel.rectangles, panel.tiles and panel.lines.
For circles and squares neg. values are represented by a dashed border. For
blocks all blocks are the same size (can be used with shading = TRUE).

highlight a logical scalar indicating whether to use highlighting. If TRUE, all variables with
values greater than the variable-wise mean are highlighted. To control highlight-
ing, also a logical matrix or a matrix with colors with the same dimensions as x
can be supplied.
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row_labels, col_labels
a logical indicating if row and column labels in x should be displayed. If NULL
then labels are displayed if the x contains the appropriate dimname and the num-
ber of labels is 25 or less. A character vector of the appropriate length with labels
can also be supplied.

flip_axes logical indicating whether to swap cases and variables in the plot. The default
(TRUE) is to plot cases as columns and variables as rows.

... ggbertinplot(): further parameters are passed on to ggpimage().
bertinplot(): further parameters can include:

• xlab, ylab labels (default: use labels from x).
• spacing relative space between symbols (default: 0.2).
• shading use gray shades to encode value instead of highlighting (default:
FALSE).

• shading.function a function that accepts a single argument in range [.1, .8]
and returns a valid corresponding color (e.g., using rgb()).

• frame plot a grid to separate symbols (default: FALSE).
• mar margins (see par()).
• gp_labels gpar object for labels (see gpar())
• gp_panels gpar object for panels (see gpar()).
• newpage a logical indicating whether to start the plot on a new page (see
grid.newpage()).

• pop a logical indicating whether to pop the created viewports (see pop.viewport())?
value, spacing, hl

are used internally for the panel functions.

col, y and x in bertin_cut_line() are for adding a line to a bertinplot() (not
ggplot2-based).

geom visualization type. Available ggplot2 geometries are: "tile", "rectangle",
"circle", "line", "bar", "none".

prop logical; change the aspect ratio so cells in the image have a equal width and
height.

Details

The plot is organized as a matrix of symbols. The symbols are drawn by a panel function, where
all symbols of a row are drawn by one call of the function (using vectorization). The interface for
the panel function is panel.myfunction(value, spacing, hl). value is the vector of values for
a row scaled between 0 and 1, spacing contains the relative space between symbols and hl is a
logical vector indicating which symbol should be highlighted.

Cut lines can be added to an existing Bertin plot using bertin_cut_line(x = NULL, y = NULL). x/y
is can be a number indicating where to draw the cut line between two columns/rows. If both x and
y is specified then one can select a row/column and the other can select a range to draw a line which
does only span a part of the row/column. It is important to call bertinplot() with the option pop
= FALSE.

ggbertinplot() calls ggpimage() and all additional parameters are passed on.
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Value

Nothing.

Author(s)

Michael Hahsler

References

de Falguerolles, A., Friedrich, F., Sawitzki, G. (1997): A Tribute to J. Bertin’s Graphical Data
Analysis. In: Proceedings of the SoftStat ’97 (Advances in Statistical Software 6), 11–20.

See Also

Other plots: VAT(), dissplot(), hmap(), palette(), pimage()

Examples

data("Irish")
scale_by_rank <- function(x) apply(x, 2, rank)
x <- scale_by_rank(Irish[,-6])

# Use the the sum of absolute rank differences
order <- c(

seriate(dist(x, "minkowski", p = 1)),
seriate(dist(t(x), "minkowski", p = 1))

)

# Plot
bertinplot(x, order)

# Some alternative displays
bertinplot(x, order, panel = panel.tiles, shading_col = bluered(100), highlight = FALSE)
bertinplot(x, order, panel = panel.circles, spacing = -.2)
bertinplot(x, order, panel = panel.rectangles)
bertinplot(x, order, panel = panel.lines)

# Plot with cut lines (we manually set the order here)
order <- ser_permutation(c(6L, 9L, 29L, 10L, 32L, 22L, 2L, 35L,

24L, 30L, 33L, 25L, 37L, 36L, 8L, 27L, 4L, 39L, 3L, 40L, 38L,
1L, 31L, 34L, 28L, 23L, 5L, 11L, 7L, 41L, 13L, 26L, 17L, 15L,
12L, 20L, 14L, 18L, 19L, 16L, 21L),
c(4L, 2L, 1L, 6L, 7L, 8L, 5L, 3L))

bertinplot(x, order, pop=FALSE)
bertin_cut_line(, 4) ## horizontal line between rows 4 and 5
bertin_cut_line(, 7) ## separate "Right to Life" from the rest
bertin_cut_line(18, c(0, 4)) ## separate a block of large values (vertically)

# ggplot2-based plots
if (require("ggplot2")) {

library(ggplot2)
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# Default plot uses bars and highlighting values larger than the mean
ggbertinplot(x, order)

# highlight values in the 4th quartile
ggbertinplot(x, order, highlight = quantile(x, probs = .75))

# Use different geoms. "none" lets the user specify their own geom.
# Variables set are row, col and x (for the value).

ggbertinplot(x, order, geom = "tile", prop = TRUE)
ggbertinplot(x, order, geom = "rectangle")
ggbertinplot(x, order, geom = "rectangle", prop = TRUE)
ggbertinplot(x, order, geom = "circle")
ggbertinplot(x, order, geom = "line")

# Tiles with diverging color scale
ggbertinplot(x, order, geom = "tile", prop = TRUE) +

scale_fill_gradient2(midpoint = mean(x))

# Custom geom (geom = "none"). Defined variables are row, col, and x for the value
ggbertinplot(x, order, geom = "none", prop = FALSE) +

geom_point(aes(x = col, y = row, size = x, color = x > 30), pch = 15) +
scale_size(range = c(1, 10))

# Use a ggplot2 theme with theme_set()
old_theme <- theme_set(theme_minimal() +

theme(panel.grid = element_blank())
)

ggbertinplot(x, order, geom = "bar")
theme_set(old_theme)

}

Chameleon 2D Data Sets used for the CHAMELEON Clustering Algorithm

Description

Several 2D data sets created to evaluate the CHAMELEON clustering algorithm in the paper by
Karypis et al (1999).

Format

chameleon_ds4: The format is a 8,000 x 2 data.frame.

chameleon_ds5: The format is a 8,000 x 2 data.frame.

chameleon_ds7: The format is a 10,000 x 2 data.frame.

chameleon_ds8: The format is a 8,000 x 2 data.frame.
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References

Karypis, G., EH. Han, V. Kumar (1999): CHAMELEON: A Hierarchical Clustering Algorithm
Using Dynamic Modeling, IEEE Computer, 32(8): 68–75. doi:10.1109/2.781637

See Also

Other data: Irish, Munsingen, SupremeCourt, Townships, Wood, Zoo, create_lines_data(),
is.robinson()

Examples

data(Chameleon)

plot(chameleon_ds4, cex = .1)
plot(chameleon_ds5, cex = .1)
plot(chameleon_ds7, cex = .1)
plot(chameleon_ds8, cex = .1)

create_lines_data Create Simulated Data for Seriation Evaluation

Description

Several functions to create simulated data to evaluate different aspects of seriation algorithms and
criterion functions.

Usage

create_lines_data(n = 250)

create_ordered_data(
n = 250,
k = 2,
size = NULL,
spacing = 6,
path = "linear",
sd1 = 1,
sd2 = 0

)

Arguments

n number of data points to create.

k number of Gaussian components.

size relative size (number of points) of components (length of k). If NULL then all
components have the same size.

https://doi.org/10.1109/2.781637
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spacing space between the centers of components. The default of 6 means that the com-
ponents will barely touch at ds1 = 1 (3 standard deviations for each Gaussian
component).

path Are the components arranged along a "linear" or "circular" path?

sd1 variation in the direction along the components. A value greater than one means
the components are mixing.

sd2 variation perpendicular to the direction along the components. A value greater
than 0 will introduce anti-Robinson violation events.

Details

create_lines_data() recreates the lines data set used in for iVAT() in Havens and Bezdeck
(2012).

create_ordered_data() (Hahsler et al, 2021) is a versatile function which creates "orderable"
2D data using Gaussian components along a linear or circular path. The components are equally
spaced (spacing) along the path. The default spacing of 6 ensures that 2 adjacent components with
a standard deviation of one along the direction of the path will barely touch. The standard deviation
along the path is set by sd1. The standard deviation perpendicular to the path is set by sd2. A
value larger than zero will result in the data not being perfectly orderable (i.e., the resulting distance
matrix will not be a perfect pre-anti-Robinson matrix and contain anti-Robinson violation events
after seriation). Note that a circular path always creates anti-Robinson violation since the circle has
to be broken at some point to create a linear order.

Value

a data.frame with the created data.

Author(s)

Michael Hahsler

References

Havens, T.C. and Bezdek, J.C. (2012): An Efficient Formulation of the Improved Visual Assessment
of Cluster Tendency (iVAT) Algorithm, IEEE Transactions on Knowledge and Data Engineering,
24(5), 813–822.

Michael Hahsler, Christian Buchta and Kurt Hornik (2021). seriation: Infrastructure for Ordering
Objects Using Seriation. R package version 1.3.2. https://github.com/mhahsler/seriation

See Also

seriate(), criterion(), iVAT().

Other data: Chameleon, Irish, Munsingen, SupremeCourt, Townships, Wood, Zoo, is.robinson()

https://github.com/mhahsler/seriation
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Examples

## lines data set from Havens and Bezdek (2011)
x <- create_lines_data(100)
plot(x, xlim = c(-5, 5), ylim = c(-3, 3), cex = .2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "OLO_single"), col = bluered(100, bias = .5), key = TRUE)

## create_ordered_data can produce many types of "orderable" data

## perfect pre-Anti-Robinson matrix (with a single components)
x <- create_ordered_data(100, k = 1)
plot(x, cex = .2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "MDS"), col = bluered(100, bias=.5), key = TRUE)

## separated components
x <- create_ordered_data(100, k = 5)
plot(x, cex =.2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "MDS"), col = bluered(100, bias = .5), key = TRUE)

## overlapping components
x <- create_ordered_data(100, k = 5, sd1 = 2)
plot(x, cex = .2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "MDS"), col = bluered(100, bias = .5), key = TRUE)

## introduce anti-Robinson violations (a non-zero y value)
x <- create_ordered_data(100, k = 5, sd1 = 2, sd2 = 5)
plot(x, cex = .2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "MDS"), col = bluered(100, bias = .5), key = TRUE)

## circular path (has always violations)
x <- create_ordered_data(100, k = 5, path = "circular", sd1 = 2)
plot(x, cex = .2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "OLO"), col = bluered(100, bias = .5), key = TRUE)

## circular path (with more violations violations)
x <- create_ordered_data(100, k = 5, path = "circular", sd1 = 2, sd2 = 1)
plot(x, cex=.2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "OLO"), col = bluered(100, bias = .5), key = TRUE)

criterion Criterion for a Loss/Merit Function for Data Given a Permutation

Description

Compute the value for different loss functions L and merit function M for data given a permutation.
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Usage

criterion(x, order = NULL, method = NULL, force_loss = FALSE, ...)

## S3 method for class 'array'
criterion(x, order = NULL, method = NULL, force_loss = FALSE, ...)

## S3 method for class 'dist'
criterion(x, order = NULL, method = NULL, force_loss = FALSE, ...)

## S3 method for class 'matrix'
criterion(x, order = NULL, method = NULL, force_loss = FALSE, ...)

## S3 method for class 'data.frame'
criterion(x, order = NULL, method = NULL, force_loss = FALSE, ...)

## S3 method for class 'table'
criterion(x, order = NULL, method = NULL, force_loss = FALSE, ...)

Arguments

x an object of class dist or a matrix (currently no functions are implemented for
array).

order an object of class ser_permutation suitable for x. If NULL, the identity permuta-
tion is used.

method a character vector with the names of the criteria to be employed (see list_criterion_methods()),
or NULL (default) in which case all available criteria are used.

force_loss logical; should merit function be converted into loss functions by multiplying
with -1?

... additional parameters passed on to the criterion method.

Details

Criteria for distance matrices (dist)

For a symmetric dissimilarity matrix D with elements d(i, j) where i, j = 1 . . . n, the aim is gener-
ally to place low distance values close to the diagonal. The following criteria to judge the quality of
a certain permutation of the objects in a dissimilarity matrix are currently implemented (for a more
detailed description and an experimental comparison see Hahsler (2017)):

• Gradient measures: "Gradient_raw", "Gradient_weighted" (Hubert et al, 2001)
A symmetric dissimilarity matrix where the values in all rows and columns only increase
when moving away from the main diagonal is called a perfect anti-Robinson matrix (Robinson
1951). A suitable merit measure which quantifies the divergence of a matrix from the anti-
Robinson form is

M(D) =

n∑
i=1

∑
i<k<j

f(dij , dik) +
∑

i<k<j

f(dij , dkj)
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where f(., .) is a function which defines how a violation or satisfaction of a gradient condition
for an object triple (Oi, Ok, Oj) is counted.
Hubert et al (2001) suggest two functions. The first function is given by:

f(z, y) = sign(y − z) = +1 if z < y; 0 if z = y; and − 1 if z > y.

It results in raw number of triples satisfying the gradient constraints minus triples which vio-
late the constraints.
The second function is defined as:

f(z, y) = |y − z|sign(y − z) = y − z

It weights the each satisfaction or violation by the difference by its magnitude given by the
absolute difference between the values.

• Anti-Robinson events: "AR_events", "AR_deviations" (Chen, 2002)
"AR_events" counts the number of violations of the anti-Robinson form.

L(D) =

n∑
i=1

∑
i<k<j

f(dik, dij) +
∑

i<k<j

f(dkj , dij)

with
f(z, y) = I(z, y) = 1 if z < y and 0 otherwise,

where I(.) is an indicator function returning 1 only for violations. Chen (2002) presented a
formulation for an equivalent loss function and called the violations anti-Robinson events.
"AR_deviations": Chen (2002) also introduced a weighted versions of the loss function by
using

f(z, y) = |y − z|I(z, y)

which weights each violation by the deviation.

• Relative generalized Anti-Robinson events: "RGAR" (Tien et al, 2008)
Counts Anti-Robinson events in a variable band (window specified by w defaults to the maxi-
mum of n− 1) around the main diagonal and normalizes by the maximum of possible events.

L(D) = 1/m

n∑
i=1

∑
(i−w)≤j<k<i

I(dij < dik) +
∑

i<j<k≤(i+w))

I(dij > dik)

where m = (2/3 − n)w + nw2 − 2/3w3, the maximal number of possible anti-Robinson
events in the window. The window size w represents the number of neighboring objects
(number of entries from the diagonal of the distance matrix) are considered. The window size
is 2 ≤ w < n, where smaller values result in focusing on the local structure while larger
values look at the global structure.
... parameters are:

– w window size. Default is to use a pct of 100% of n.
– pct and alternative specification of w as a percentage of n in (0, 100].
– relative logical; can be set to FALSE to get the GAR, i.e., the absolute number of AR

events in the window.
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• Banded anti-Robinson form criterion: "BAR" (Earle and Hurley, 2015)
Simplified measure for closeness to the anti-Robinson form in a band of size b with 1 <= b <
n around the diagonal.

L(D) =
∑

|i−j|<=b

(b+ 1− |i− j|)dij

For b = 1 the measure reduces to the Hamiltonian path length. For b = n− 1 the measure is
equivalent to ARc defined (Earle and Hurley, 2015). Note that ARc is equivalent to the Linear
Seriation criterion (scaled by 1/2).
... parameter is: b band size defaults to a band of 20% of n.

• Hamiltonian path length: "Path_length" (Caraux and Pinloche, 2005)
The order of the objects in a dissimilarity matrix corresponds to a path through a graph where
each node represents an object and is visited exactly once, i.e., a Hamilton path. The length
of the path is defined as the sum of the edge weights, i.e., dissimilarities.

L(D) =

n−1∑
i=1

di,i+1

The length of the Hamiltonian path is equal to the value of the minimal span loss function (as
used by Chen 2002). Both notions are related to the traveling salesperson problem (TSP).
If order is not unique or there are non-finite distance values NA is returned.

• Lazy path length: "Lazy_path_length" (Earl and Hurley, 2015)
A weighted version of the Hamiltonian path criterion. This loss function postpones larger
distances to later in the order (i.e., a lazy traveling sales person).

L(D) =

n−1∑
i=1

(n− i)di,i+1

Earl and Hurley (2015) proposed this criterion for reordering in visualizations to concentrate
on closer objects first.

• Inertia criterion: "Inertia" (Caraux and Pinloche, 2005)
Measures the moment of the inertia of dissimilarity values around the diagonal as

M(D) =

n∑
i=1

n∑
j=1

d(i, j)|i− j|2

|i − j| is used as a measure for the distance to the diagonal and d(i, j) gives the weight.
This criterion gives higher weight to values farther away from the diagonal. It increases with
quality.

• Least squares criterion: "Least_squares" (Caraux and Pinloche, 2005)
The sum of squared differences between distances and the rank differences:

L(D) =

n∑
i=1

n∑
j=1

(d(i, j)− |i− j|)2,
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where d(i, j) is an element of the dissimilarity matrix D and |i − j| is the rank difference
between the objects.
Note that if Euclidean distance is used to calculate D from a data matrix X , the order of
the elements in X by projecting them on the first principal component of X minimizes this
criterion. The least squares criterion is related to unidimensional scaling.

• Linear Seriation Criterion: "LS" (Hubert and Schultz, 1976)
Weights the distances with the absolute rank differences.

L(D)

n∑
i,j=1

d(i, j)(−|i− j|)

• 2-Sum Criterion: "2SUM" (Barnard, Pothen and Simon, 1993)
The 2-Sum loss criterion multiplies the similarity between objects with the squared rank dif-
ferences.

L(D)

n∑
i,j=1

1/(1 + d(i, j))(i− j)2,

where s(i, j) = 1/(1 + d(i, j)) represents the similarity between objects i and j.

• Absolute Spearman Correlation "Rho"

The absolute value of the Spearman rank correlation between the original distances and the
rank differences in the order.

• Matrix measures: "ME", "Moore_stress", "Neumann_stress"
These criteria are defined on general matrices (see below for definitions). The dissimilarity
matrix is first converted into a similarity matrix using S = 1/(1 +D). If a different transfor-
mation is required, then perform the transformation first and supply a matrix instead of a dist
object.

Criteria for matrices (matrix)

For a general matrix X = xij , i = 1 . . . n and j = 1 . . .m, currently the following loss/merit
functions are implemented:

• Measure of Effectiveness: "ME" (McCormick, 1972).
The measure of effectiveness (ME) for matrix X , is defined as

M(X) = 1/2

n∑
i=1

m∑
j=1

xi,j(xi,j−1 + xi,j+1 + xi−1,j + xi+1,j)

with, by convention

x0,j = xm+1,j = xi,0 = xi,n+1 = 0.

ME is a merit measure, i.e. a higher ME indicates a better arrangement. Maximizing ME is the
objective of the bond energy algorithm (BEA). ME is not defined for matrices with negative
values. NA is returned in this case.
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• Weighted correlation coefficient: "Cor_R" (Deutsch and Martin, 1971)
Developed as the Measure of Effectiveness for the Moment Ordering Algorithm. R is a merit
measure normalized so that its value always lies in [−1, 1]. For the special case of a square ma-
trix R = 1 corresponds to only the main diagonal being filled, R = 0 to a random distribution
of value throughout the array, and R = −1 to the opposite diagonal only being filled.

• Matrix Stress: "Moore_stress", "Neumann_stress" (Niermann, 2005)
Stress measures the conciseness of the presentation of a matrix/table and can be seen as a
purity function which compares the values in a matrix/table with its neighbors. The stress
measure used here is computed as the sum of squared distances of each matrix entry from its
adjacent entries.

L(X) =

n∑
i=1

m∑
j=1

σij

The following types of neighborhoods are available:

– Moore: comprises the eight adjacent entries.

σij =

min(n,i+1)∑
k=max(1,i−1)

min(m,j+1)∑
l=max(1,j−1)

(xij − xkl)
2

– Neumann: comprises the four adjacent entries.

σij =

min(n,i+1)∑
k=max(1,i−1)

(xij − xkj)
2 +

min(m,j+1)∑
l=max(1,j−1)

(xij − xil)
2

The major difference between the Moore and the Neumann neighborhood is that for the later
the contribution of row and column permutations to stress are independent and thus can be
optimized independently.

Value

A named vector of real values.

Author(s)

Michael Hahsler

References
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Supercomputing ’93. New York, NY, USA: ACM.

Caraux, G. and S. Pinloche (2005): Permutmatrix: A Graphical Environment to Arrange Gene
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Robinson, W.S. (1951): A method for chronologically ordering archaeological deposits, American
Antiquity, 16, 293–301. doi:10.2307/276978
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See Also

Other criterion: registry_for_criterion_methods

Examples

## create random data and calculate distances
m <- matrix(runif(20),ncol=2)
d <- dist(m)

## get an order for rows (optimal for the least squares criterion)
o <- seriate(d, method = "MDS")
o

## compare the values for all available criteria
rbind(

unordered = criterion(d),
ordered = criterion(d, o)

)

## compare RGAR by window size (from local to global)
w <- 2:(nrow(m)-1)
RGAR <- sapply(w, FUN = function (w)

criterion(d, o, method="RGAR", w = w))
plot(w, RGAR, type = "b", ylim = c(0,1),

xlab = "Windows size (w)", main = "RGAR by window size")

https://doi.org/10.1287/opre.19.6.1350
https://doi.org/10.1080/10618600.2013.874295
https://doi.org/10.1016/j.ejor.2016.08.066
https://doi.org/10.1111/j.2044-8317.1976.tb00714.x
https://doi.org/10.1137/1.9780898718553
https://doi.org/10.1198/000313005X22770
https://doi.org/10.1287/opre.20.5.993
https://doi.org/10.2307/276978
https://doi.org/10.1186/1471-2105-9-155
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dissplot Dissimilarity Plot

Description

Visualizes a dissimilarity matrix using seriation and matrix shading using the method developed by
Hahsler and Hornik (2011). Entries with lower dissimilarities (higher similarity) are plotted darker.
Dissimilarity plots can be used to uncover hidden structure in the data and judge cluster quality.

Usage

dissplot(
x,
labels = NULL,
method = "spectral",
control = NULL,
lower_tri = TRUE,
upper_tri = "average",
diag = TRUE,
cluster_labels = TRUE,
cluster_lines = TRUE,
reverse_columns = FALSE,
options = NULL,
...

)

## S3 method for class 'reordered_cluster_dissimilarity_matrix'
plot(
x,
lower_tri = TRUE,
upper_tri = "average",
diag = TRUE,
options = NULL,
...

)

## S3 method for class 'reordered_cluster_dissimilarity_matrix'
print(x, ...)

ggdissplot(
x,
labels = NULL,
method = "spectral",
control = NULL,
lower_tri = TRUE,
upper_tri = "average",
diag = TRUE,
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cluster_labels = TRUE,
cluster_lines = TRUE,
reverse_columns = FALSE,
...

)

Arguments

x an object of class dist.

labels NULL or an integer vector of the same length as rows/columns in x indicating
the cluster membership for each object in x as consecutive integers starting with
one. The labels are used to reorder the matrix.

method A single character string indicating the seriation method used to reorder the
clusters (inter cluster seriation) as well as the objects within each cluster (intra
cluster seriation). If different algorithms for inter and intra cluster seriation are
required, method can be a list of two named elements (inter_cluster and
intra_cluster each containing the name of the respective seriation method.
Use list_seriation_methods() with kind = "dist" to find available algo-
rithms.
Set method to NA to plot the matrix as is (no or, if cluster labels are supplied,
only coarse seriation). For intra cluster reordering with the special method
"silhouette width" is available (for dissplot() only). Objects in clusters
are then ordered by silhouette width (from silhouette plots). If no method is
given, the default method of seriate.dist() is used.
A third list element (named aggregation) can be added to control how inter
cluster dissimilarities are computed from from the given dissimilarity matrix.
The choices are "avg" (average pairwise dissimilarities; average-link), "min"
(minimal pairwise dissimilarities; single-link), "max" (maximal pairwise dis-
similarities; complete-link), and "Hausdorff" (pairs up each point from one
cluster with the most similar point from the other cluster and then uses the largest
dissimilarity of paired up points).

control a list of control options passed on to the seriation algorithm. In case of two
different seriation algorithms, control can contain a list of two named elements
(inter_cluster and intra_cluster) containing each a list with the control
options for the respective algorithm.

upper_tri, lower_tri, diag
a logical indicating whether to show the upper triangle, the lower triangle or the
diagonal of the distance matrix. The string "average" can also be used to display
within and between cluster averages in the two triangles.

cluster_labels a logical indicating whether to display cluster labels in the plot.

cluster_lines a logical indicating whether to draw lines to separate clusters.
reverse_columns

a logical indicating if the clusters are displayed on the diagonal from north-west
to south-east (FALSE; default) or from north-east to south-west (TRUE).

options a list with options for plotting the matrix (dissplot only).
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• plot a logical indicating if a plot should be produced. if FALSE, the returned
object can be plotted later using the function plot which takes as the second
argument a list of plotting options (see options below).

• silhouettes a logical indicating whether to include a silhouette plot (see
Rousseeuw, 1987).

• threshold a numeric. If used, only plot distances below the threshold are
displayed. Consider also using zlim for this purpose.

• col colors used for the image plot.
• key a logical indicating whether to place a color key below the plot.
• zlim range of values to display (defaults to range x).
• axes "auto" (default; enabled for less than 25 objects), "y" or "none".
• main title for the plot.
• newpage a logical indicating whether to start plot on a new page (see grid.newpage().
• pop a logical indicating whether to pop the created viewports? (see package

grid)
• gp, gp_lines, gp_labels objects of class gpar containing graphical pa-

rameters for the plot lines and labels (see gpar().
... dissplot(): further arguments are added to options. ggdissplot() further

arguments are passed on to ggpimage().

Details

The plot can also be used to visualize cluster quality (see Ling 1973). Objects belonging to the same
cluster are displayed in consecutive order. The placement of clusters and the within cluster order is
obtained by a seriation algorithm which tries to place large similarities/small dissimilarities close
to the diagonal. Compact clusters are visible as dark squares (low dissimilarity) on the diagonal of
the plot. Additionally, a Silhouette plot (Rousseeuw 1987) is added. This visualization is similar to
CLUSION (see Strehl and Ghosh 2002), however, allows for using arbitrary seriating algorithms.

Note: Since pimage() uses grid, it should not be mixed with base R primitive plotting functions.

Value

dissplot() returns an invisible object of class cluster_proximity_matrix with the following
elements:

order NULL or integer vector giving the order used to plot x.
cluster_order NULL or integer vector giving the order of the clusters as plotted.
method vector of character strings indicating the seriation methods used for plotting x.
k NULL or integer scalar giving the number of clusters generated.
description a data.frame containing information (label, size, average intra-cluster dissim-

ilarity and the average silhouette) for the clusters as displayed in the plot (from
top/left to bottom/right).

This object can be used for plotting via plot(x, options = NULL, ...), where x is the object and
options contains a list with plotting options (see above).

ggdissplot() returns a ggplot2 object representing the plot.

The plot description as an object of class reordered_cluster_dissimilarity_matrix.
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Author(s)

Michael Hahsler

References
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See Also

Other plots: VAT(), bertinplot(), hmap(), palette(), pimage()

Examples

data("iris")

# shuffle rows
x_iris <- iris[sample(seq(nrow(iris))), -5]
d <- dist(x_iris)

# Plot original matrix
dissplot(d, method = NA)

# Plot reordered matrix using the nearest insertion algorithm (from tsp)
dissplot(d, method = "TSP", main = "Seriation (TSP)")

# Cluster iris with k-means and 3 clusters and reorder the dissimality matrix
l <- kmeans(x_iris, centers = 3)$cluster
dissplot(d, labels = l, main = "k-means")

# show only distances as lower triangle
dissplot(d, labels = l, main = "k-means", lower_tri = TRUE, upper_tri = FALSE)

# Use a grid layout to place several plots on a page
library("grid")
grid.newpage()
pushViewport(viewport(layout=grid.layout(nrow = 2, ncol = 2),

gp = gpar(fontsize = 8)))
pushViewport(viewport(layout.pos.row = 1, layout.pos.col = 1))

# Visualize the clustering (using Spectral between clusters and MDS within)
res <- dissplot(d, l, method = list(inter = "Spectral", intra = "MDS"),

main = "K-Means + Seriation", newpage = FALSE)

https://doi.org/10.1198/jcgs.2010.09139
https://doi.org/10.1145/362248.362263
https://doi.org/10.1016/0377-0427%2887%2990125-7
https://doi.org/10.1016/0377-0427%2887%2990125-7
https://doi.org/10.1287/ijoc.15.2.208.14448
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popViewport()
pushViewport(viewport(layout.pos.row = 1, layout.pos.col = 2))

# More visualization options. Note that we reuse the reordered object res!
# color: use 10 shades red-blue, biased towards small distances
plot(res, main = "K-Means + Seriation (red-blue + biased)",

col= bluered(10, bias = .5), newpage = FALSE)

popViewport()
pushViewport(viewport(layout.pos.row = 2, layout.pos.col = 1))

# Threshold (using zlim) and cubic scale to highlight differences
plot(res, main = "K-Means + Seriation (cubic + threshold)",

zlim = c(0, 2), col = grays(100, power = 3), newpage = FALSE)

popViewport()
pushViewport(viewport(layout.pos.row = 2, layout.pos.col = 2))

# Use gray scale with logistic transformation
plot(res, main = "K-Means + Seriation (logistic scale)",

col = gray(
plogis(seq(max(res$x_reordered), min(res$x_reordered), length.out = 100),

location = 2, scale = 1/2, log = FALSE)
),

newpage = FALSE)

popViewport(2)

# The reordered_cluster_dissimilarity_matrix object
res
names(res)

## --------------------------------------------------------------------
## ggplot-based dissplot
if (require("ggplot2")) {

library("ggplot2")

# Plot original matrix
ggdissplot(d, method = NA)

# Plot seriated matrix
ggdissplot(d, method = "TSP") +

labs(title = "Seriation (TSP)")

# Cluster iris with k-means and 3 clusters
l <- kmeans(x_iris, centers = 3)$cluster

ggdissplot(d, labels = l) +
labs(title = "K-means + Seriation")

# show only lower triangle
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ggdissplot(d, labels = l, lower_tri = TRUE, upper_tri = FALSE) +
labs(title = "K-means + Seriation")

# No lines or cluster labels and add a label for the color key (fill)
ggdissplot(d, labels = l, cluster_lines = FALSE, cluster_labels = FALSE) +

labs(title = "K-means + Seriation", fill = "Distances\n(Euclidean)")

# Diverging color palette with manual set midpoint and different seriation methods
ggdissplot(d, l, method = list(inter = "Spectral", intra = "MDS")) +

labs(title = "K-Means + Seriation", subtitle = "biased color scale") +
scale_fill_gradient2(midpoint = median(d))

# Use manipulate scale using package scales
library("scales")

# Threshold (using limit and na.value) and cubic scale to highlight differences
cubic_dist_trans <- trans_new(

name = "cubic",
# note that we have to do the inverse transformation for distances
trans = function(x) x^(1/3),
inverse = function(x) x^3

)

ggdissplot(d, l, method = list(inter = "Spectral", intra = "MDS")) +
labs(title = "K-Means + Seriation", subtitle = "cubic + biased color scale") +
scale_fill_gradient(low = "black", high = "white",
limit = c(0,2), na.value = "white",
trans = cubic_dist_trans)

# Use gray scale with logistic transformation
logis_2_.5_dist_trans <- trans_new(

name = "Logistic transform (location, scale)",
# note that we have to do the inverse transformation for distances
trans = function(x) plogis(x, location = 2, scale = .5, log = FALSE),
inverse = function(x) qlogis(x, location = 2, scale = .5, log = FALSE),

)

ggdissplot(d, l, method = list(inter = "Spectral", intra = "MDS")) +
labs(title = "K-Means + Seriation", subtitle = "logistic color scale") +
scale_fill_gradient(low = "black", high = "white",
trans = logis_2_.5_dist_trans,
breaks = c(0, 1, 2, 3, 4))

}

get_order Extracting Order Information from a Permutation Object

Description

Method to get the order information from an object of class ser_permutation or ser_permutation_vector.
Order information can be extracted as a permutation vector, a vector containing each object’s rank
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or a permutation matrix.

Usage

get_order(x, ...)

## S3 method for class 'ser_permutation_vector'
get_order(x, ...)

## S3 method for class 'ser_permutation'
get_order(x, dim = 1, ...)

## S3 method for class 'hclust'
get_order(x, ...)

## S3 method for class 'dendrogram'
get_order(x, ...)

## S3 method for class 'integer'
get_order(x, ...)

## S3 method for class 'numeric'
get_order(x, ...)

get_rank(x, ...)

get_permutation_matrix(x, ...)

Arguments

x an object of class ser_permutation or ser_permutation_vector.

... further arguments are ignored for get_order(). For get_rank() and for get_permutation_matrix()
the additional arguments are passed on to get_order() (e.g., as dim).

dim order information for which dimension should be returned?

Details

get_order() returns the permutation as an integer vector which arranges the objects in the seriation
order. That is, a vector with the index of the first, second, ..., n-th object in the order defined by
the permutation. These permutation vectors can directly be used to reorder objects using subsetting
with "[". Note: In seriation we usually use these order-based permutation vectors. Note on
names: While R’s order() returns an unnamed vector, get_order() returns names (if available).
The names are the object label corresponding to the index at that position. Therefore, the names in
the order are in the order after the permutation.

get_rank() returns the seriation as an integer vector containing the rank/position for each objects
after the permutation is applied. That is, a vector with the position of the first, second, ..., n-th
object after permutation. Note: Use order() to convert ranks back to an order.

get_permutation_matrix() returns a n× n permutation matrix.



24 hmap

Value

Returns an integer permutation vector/a permutation matrix.

Author(s)

Michael Hahsler

See Also

Other permutation: permutation_vector2matrix(), permute(), ser_dist(), ser_permutation(),
ser_permutation_vector()

Examples

## create a random ser_permutation_vector
## Note that ser_permutation_vector is a single permutation vector
x <- structure(1:10, names = paste0("X", 1:10))
o <- sample(x)
o

p <- ser_permutation_vector(o)
p

get_order(p)
get_rank(p)
get_permutation_matrix(p)

## reorder objects using subsetting, the provided permute function or by
## multiplying the with the permutation matrix. We use here
x[get_order(p)]
permute(x, p)
drop(get_permutation_matrix(p) %*% x)

## ser_permutation contains one permutation vector for each dimension
p2 <- ser_permutation(p, sample(5))
p2

get_order(p2, dim = 2)
get_rank(p2, dim = 2)
get_permutation_matrix(p2, dim = 2)

hmap Plot Heat Map Reordered Using Seriation

Description

Provides heatmaps reordered using several different seriation methods. This includes dendrogram
based reordering with optimal leaf order and matrix seriation-based heat maps.
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Usage

hmap(
x,
distfun = stats::dist,
method = "OLO_complete",
control = NULL,
scale = c("none", "row", "column"),
plot_margins = "auto",
col = NULL,
col_dist = grays(power = 2),
row_labels = NULL,
col_labels = NULL,
...

)

gghmap(
x,
distfun = stats::dist,
method = "OLO_complete",
control = NULL,
scale = c("none", "row", "column"),
prop = FALSE,
...

)

Arguments

x a matrix or a dissimilarity matrix of class dist. If a dissimilarity matrix is used,
then the distfun is ignored.

distfun function used to compute the distance (dissimilarity) between both rows and
columns. For gghmap(), this parameter is passed on in control.

method a character strings indicating the used seriation algorithm (see seriate.dist()).
If the method results in a dendrogram then stats::heatmap() is used to show
the dendrograms, otherwise reordered distance matrices are shown instead.

control a list of control options passed on to the seriation algorithm specified in method.

scale character indicating if the values should be centered and scaled in either the row
direction or the column direction, or none. Default is none.

plot_margins character indicating what to show in the margins. Options are: "auto", "dendrogram",
"distances", or "none".

col a list of colors used.

col_dist colors used for displaying distances.
row_labels, col_labels

a logical indicating if row and column labels in x should be displayed. If NULL
then labels are displayed if the x contains the appropriate dimname and the num-
ber of labels is 25 or less. A character vector of the appropriate length with labels
can also be supplied.
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... further arguments passed on to stats::heatmap().

prop logical; change the aspect ratio so cells in the image have a equal width and
height.

Details

For dendrogram based heat maps, the arguments are passed on to stats::heatmap() in stats. The
following arguments for heatmap() cannot be used: margins, Rowv, Colv, hclustfun, reorderfun.

For seriation-based heat maps further arguments include:

• gp an object of class gpar containing graphical parameters (see gpar() in package grid).

• newpage a logical indicating whether to start plot on a new page

• prop a logical indicating whether the height and width of x should be plotted proportional to
its dimensions.

• showdist Display seriated dissimilarity matrices? Values are "none", "both", "rows" or
"columns".

• key logical; show a colorkey?

• key.lab Label plotted next to the color key.

• margins bottom and right-hand-side margins are calculated automatically or can be specifies
as a vector of two numbers (in lines).

• zlim range of values displayed.

• col, col_dist color palettes used.

Value

An invisible list with elements:

rowInd, colInd index permutation vectors.

reorder_method name of the method used to reorder the matrix.

The list may contain additional elements (dendrograms, colors, etc).

Author(s)

Michael Hahsler

See Also

Other plots: VAT(), bertinplot(), dissplot(), palette(), pimage()

Examples

data("Wood")

# Default heatmap does Euclidean distance, hierarchical clustering with
# complete-link and optimal leaf ordering. Note that the rows are
# ordered top-down in the seriation order (stats::heatmap orders in reverse)
hmap(Wood, main = "Wood (opt. leaf ordering)")
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hmap(Wood, plot_margins = "distances", main = "Wood (opt. leaf ordering)")
hmap(Wood, plot_margins = "none", main = "Wood (opt. leaf ordering)")

# Heatmap with correlation-based distance, green-red color (greenred is
# predefined) and optimal leaf ordering and no row label
dist_cor <- function(x) as.dist(sqrt(1 - cor(t(x))))
hmap(Wood, distfun = dist_cor, col = greenred(100),

main = "Wood (reorded by corr. between obs.)")

# Heatmap for distances
d <- dist(Wood)
hmap(d, main = "Wood (Euclidean distances)")

# order-based with dissimilarity matrices
hmap(Wood, method = "MDS_angle",

col = greenred(100), col_dist = greens(100, power = 2),
keylab = "norm. Expression", main = "Wood (reorderd with distances)")

# Manually create a simple heatmap with pimage.
o <- seriate(Wood, method = "heatmap",

control = list(dist_fun = dist, seriation_method = "OLO_ward"))
o

pimage(Wood, o)

# Note: method heatmap calculates reorderd hclust objects which can be used
# for many heatmap implementations like the standard implementation in
# package stats.
heatmap(Wood, Rowv = as.dendrogram(o[[1]]), Colv = as.dendrogram(o[[2]]))

# ggplot 2 version does not support dendrograms in the margin (for now)
if (require("ggplot2")) {

library("ggplot2")

gghmap(Wood) + labs(title = "Wood", subtitle = "Optimal leaf ordering")

gghmap(Wood, flip_axes = TRUE, prop = TRUE) +
labs(title = "Wood", subtitle = "Optimal leaf ordering")

dist_cor <- function(x) as.dist(sqrt(1 - cor(t(x))))
gghmap(Wood, distfun = dist_cor) +

labs(title = "Wood", subtitle = "Reorded by correlation between observations") +
scale_fill_gradient2(low = "darkgreen", high = "red")

gghmap(d, prop = TRUE) +
labs(title = "Wood", subtitle = "Euclidean distances, reordered")

# Note: the ggplot2-based version currently cannot show distance matrices
# in the same plot.

# Manually seriate and plot as pimage.
o <- seriate(Wood, method = "heatmap", control = list(dist_fun = dist,

seriation_method = "OLO_ward"))
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o

ggpimage(Wood, o)
}

Irish Irish Referendum Data Set

Description

A data matrix containing the results of 8 referenda for 41 Irish communities used in Falguerolles et
al (1997).

Format

The format is a 41 x 9 matrix. Two values are missing.

Details

Column 6 contains the size of the Electorate in 1992.

Source

The data was kindly provided by Guenter Sawitzki.

References

de Falguerolles, A., Friedrich, F., Sawitzki, G. (1997) A Tribute to J. Bertin’s Graphical Data Anal-
ysis. In: Proceedings of the SoftStat ’97 (Advances in Statistical Software 6), 11–20.

See Also

Other data: Chameleon, Munsingen, SupremeCourt, Townships, Wood, Zoo, create_lines_data(),
is.robinson()

Examples

data(Irish)
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is.robinson Create and Recognize Robinson and Pre-Robinson Matrices

Description

Provides functions to create and recognize (anti) Robinson and pre-Robinson matrices. A (anti)
Robinson matrix has strictly decreasing (increasing) values when moving away from the main diag-
onal. A pre-Robinson matrix is a matrix which can be transformed into a perfect Robinson matrix
using simultaneous permutations of rows and columns.

Usage

is.robinson(x, anti = TRUE, pre = FALSE)

random.robinson(n, anti = TRUE, pre = FALSE, noise = 0)

Arguments

x a symmetric, positive matrix or a dissimilarity matrix (a dist object).

anti logical; check for anti Robinson structure? Note that for distances, anti Robin-
son structure is appropriate.

pre logical; recognize/create pre-Robinson matrices.

n number of objects.

noise noise intensity between 0 and 1. Zero means no noise. Noise more than zero
results in non-Robinson matrices.

Details

Note that the default matrices are anti Robinson matrices. This is done because distance matrices
(the default in R) are typically anti Robinson matrices with values increasing when moving away
from the diagonal.

Robinson matrices are recognized using the fact that they have zero anti Robinson events. For pre-
Robinson matrices we use spectral seriation first since spectral seriation is guaranteed to perfectly
reorder pre-Robinson matrices (see Laurent and Seminaroti, 2015).

Random pre-Robinson matrices are generated by reversing the process of unidimensional scaling.
We randomly (uniform distribution with range [0, 1]) choose x coordinates for n points on a straight
line and calculate the pairwise distances. For Robinson matrices, the points are sorted first according
to x. For noise, y coordinates is added. The coordinates are chosen uniformly between 0 and noise,
with noise between 0 and 1.

Value

A single logical value.
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References

M. Laurent, M. Seminaroti (2015): The quadratic assignment problem is easy for Robinsonian
matrices with Toeplitz structure, Operations Research Letters 43(1), 103–109.

See Also

Other data: Chameleon, Irish, Munsingen, SupremeCourt, Townships, Wood, Zoo, create_lines_data()

Examples

## create a perfect anti Robinson structure
m <- random.robinson(10)
pimage(m)

is.robinson(m)

## permute the structure to make it not Robinsonian. However,
## it is still pre-Robinson.
o <- sample(10)
m2 <- permute(m, ser_permutation(o,o))
pimage(m2)

is.robinson(m2)
is.robinson(m2, pre = TRUE)

## create a binary random Robinson matrix (not anti Robinson)
m3 <- random.robinson(10, anti = FALSE) > .7
pimage(m3)
is.robinson(m3, anti = FALSE)

## create matrices with noise (as distance matrices)
m4 <- as.dist(random.robinson(50, pre = FALSE, noise = .1))
pimage(m4)
criterion(m4, method = "AR")

m5 <- as.dist(random.robinson(50, pre = FALSE, noise = .5))
pimage(m5)
criterion(m5, method = "AR")

lle Locally Linear Embedding (LLE)

Description

Performs the non linear dimensionality reduction method locally linear embedding proposed in
Roweis and Saul (2000).

Usage

lle(x, m, k, reg = 2)
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Arguments

x a matrix.

m dimensions of the desired embedding.

k number of neighbors.

reg regularization method. 1, 2 and 3, by default 2. See details.

Details

LLE tries to find a lower-dimensional projection which preserves distances within local neighbor-
hoods. This is done by (1) find for each object the k nearest neighbors, (2) construct the LLE weight
matrix which represents each point as a linear combination of its neighborhood, and (2) perform
partial eigenvalue decomposition to find the embedding.

The reg parameter allows the decision between different regularization methods. As one step of
the LLE algorithm, the inverse of the Gram-matrix G ∈ Rkxk has to be calculated. The rank of
G equals m which is mostly smaller than k - this is why a regularization G(i) + r · I should be
performed. The calculation of regularization parameter r can be done using different methods:

• reg = 1: standardized sum of eigenvalues of G (Roweis and Saul; 2000)

• reg = 2 (default): trace of Gram-matrix divided by k (Grilli, 2007)

• reg = 3: constant value 3*10e-3

Value

a matrix of vector with the embedding.

Author(s)

Michael Hahsler (based on code by Holger Diedrich and Markus Abel)

References

Roweis, Sam T. and Saul, Lawrence K. (2000), Nonlinear Dimensionality Reduction by Locally
Linear Embedding, Science, 290(5500), 2323–2326. doi:10.1126/science.290.5500.2323

Grilli, Elisa (2007) Automated Local Linear Embedding with an application to microarray data,
Dissertation thesis, University of Bologna. doi:10.6092/unibo/amsdottorato/380

Examples

data(iris)
x <- iris[, -5]

# project iris on 2 dimensions
conf <- lle(x, m = 2, k = 30)
conf

plot(conf, col = iris[, 5])

# project iris onto a single dimension

https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.6092/unibo/amsdottorato/380
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conf <- lle(x, m = 1, k = 30)
conf

plot_config(conf, col = iris[, 5], labels = FALSE)

LS Neighborhood functions for Seriation Method SA

Description

Definition of different local neighborhood functions for the method "SA" for seriate().

Usage

LS_swap(o, pos = sample.int(length(o), 2))

LS_insert(o, pos = sample.int(length(o), 2))

LS_reverse(o, pos = sample.int(length(o), 2))

LS_mixed(o, pos = sample.int(length(o), 2))

Arguments

o an integer vector with the order

pos random positions used for the local move.

Details

Local neighborhood functions are LS_insert, LS_swap, LS_reverse, and LS_mix (1/3 insertion,
1/3 swap and 1/3 reverse). Any neighborhood function can be defined.

Value

returns the new order vector representing the random neighbor.
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Munsingen Hodson’s Munsingen Data Set

Description

This data set contains a grave times artifact incidence matrix for the Celtic Münsingen-Rain ceme-
tery in Switzerland as provided by Hodson (1968) and published by Kendall 1971.

Format

A 59 x 70 0-1 matrix. Rows (graves) and columns (artifacts) are in the order determined by Hodson
(1968).

References

Hodson, F.R. (1968). The La Tene Cemetery at Münsingen-Rain, Stämpfli, Bern.

Kendall, D.G. (1971): Seriation from abundance matrices. In: Hodson, F.R., Kendall, D.G. and
Tautu, P., (Editors), Mathematics in the Archaeological and Historical Sciences, Edinburgh Univer-
sity Press, Edinburgh, 215–232.

See Also

Other data: Chameleon, Irish, SupremeCourt, Townships, Wood, Zoo, create_lines_data(),
is.robinson()

Examples

data("Munsingen")

## Seriation method after Kendall (1971)
## Kendall's square symmetric matrix S and SoS
S <- function(x, w = 1) {

sij <- function(i , j) w * sum(pmin(x[i,], x[j,]))
h <- nrow(x)
r <- matrix(ncol = h, nrow =h)
for(i in 1:h) for (j in 1:h) r[i,j] <- sij(i,j)
r

}

SoS <- function(x) S(S(x))

## Kendall's horse shoe (Hamiltonian arc)
horse_shoe_plot <- function(mds, sigma, threshold = mean(sigma), ...) {

plot(mds, main = paste("Kendall's horse shoe with th =", threshold), ...)
l <- which(sigma > threshold, arr.ind=TRUE)
for(i in 1:nrow(l)) lines(rbind(mds[l[i,1],], mds[l[i,2],]))

}

## shuffle data
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x <- Munsingen[sample(nrow(Munsingen)),]

## calculate matrix and do isoMDS (from package MASS)
sigma <- SoS(x)
library("MASS")
mds <- isoMDS(1/(1+sigma))$points

## plot Kendall's horse shoe
horse_shoe_plot(mds, sigma)

## find order using a TSP
library("TSP")
tour <- solve_TSP(insert_dummy(TSP(dist(mds)), label = "cut"),

method = "2-opt", control = list(rep = 15))
tour <- cut_tour(tour, "cut")
lines(mds[tour,], col = "red", lwd = 2)

## create and plot order
order <- ser_permutation(tour, 1:ncol(x))
bertinplot(x, order, options= list(panel=panel.circles,

rev = TRUE))

## compare criterion values
rbind(

random = criterion(x),
reordered = criterion(x, order),
Hodson = criterion(Munsingen)
)

palette Different Useful Color Palettes

Description

Defines several color palettes for pimage(), dissplot() and hmap().

Usage

bluered(n = 100, bias = 1, power = 1, ...)

greenred(n = 100, bias = 1, power = 1, ...)

reds(n = 100, bias = 1, power = 1, ...)

blues(n = 100, bias = 1, power = 1, ...)

greens(n = 100, bias = 1, power = 1, ...)

greys(n = 100, bias = 1, power = 1, ...)
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grays(n = 100, bias = 1, power = 1, ...)

Arguments

n number of different colors produces.

bias a positive number. Higher values give more widely spaced colors at the high
end.

power used to control how chroma and luminance is increased (1 = linear, 2 = quadratic,
etc.)

... further parameters are passed on to colorspace::sequential_hcl() or colorspace::diverging_hcl().

Details

The color palettes are created with colorspace::sequential_hcl() and colorspace::diverging_hcl().

The two sequential palettes are: reds() and grays() (or greys()).

The two diverging palettes are: bluered() and greenred().

Value

A vector with n colors.

Author(s)

Michael Hahsler

See Also

Other plots: VAT(), bertinplot(), dissplot(), hmap(), pimage()

Examples

m <- outer(1:10,1:10)
m

pimage(m)
pimage(m, col = greys(100, power = 2))
pimage(m, col = greys(100, bias = 2))
pimage(m, col = bluered(100))
pimage(m, col = bluered(100, power = .5))
pimage(m, col = bluered(100, bias = 2))
pimage(m - 25, col = greenred(20, bias = 2))

## choose your own color palettes
library(colorspace)
hcl_palettes(plot = TRUE)

## blues (with 20 shades)
pimage(m,

col = colorspace::sequential_hcl(20, "Blues", rev = TRUE))
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## blue to green (aka "Cork")
pimage(m,

col = colorspace::diverging_hcl(100, "Cork"))

permutation_vector2matrix

Conversion Between Permutation Vector and Permutation Matrix

Description

Converts between permutation vectors and matrices.

Usage

permutation_vector2matrix(x)

permutation_matrix2vector(x)

Arguments

x A permutation vector (any object that can be converted into a permutation vector,
e.g., a integer vector or a hclust object) or a matrix representing a permutation.
Arguments are checked.

Value

• permutation_vector2matrix(): returns a permutation matrix.

• permutation_matrix2vector(): returns the permutation as a integer vector.

Author(s)

Michael Hahsler

See Also

Other permutation: get_order(), permute(), ser_dist(), ser_permutation(), ser_permutation_vector()

Examples

## create a random permutation vector
pv <- structure(sample(5), names = paste0("X", 1:5))
pv

## convert into a permutation matrix
pm <- permutation_vector2matrix(pv)
pm

## convert back
permutation_matrix2vector(pm)
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permute Permute the Order in Various Objects

Description

Provides the generic function and methods for permuting the order of various objects including
vectors, lists, dendrograms (also hclust objects), the order of observations in a dist object,
the rows and columns of a matrix or data.frame, and all dimensions of an array given a suitable
ser_permutation object.

Usage

permute(x, order, ...)

## S3 method for class 'array'
permute(x, order, margin = NULL, ...)

## S3 method for class 'matrix'
permute(x, order, margin = NULL, ...)

## S3 method for class 'data.frame'
permute(x, order, margin = NULL, ...)

## S3 method for class 'table'
permute(x, order, margin = NULL, ...)

## S3 method for class 'numeric'
permute(x, order, ...)

## S3 method for class 'character'
permute(x, order, ...)

## S3 method for class 'list'
permute(x, order, ...)

## S3 method for class 'dist'
permute(x, order, ...)

## S3 method for class 'dendrogram'
permute(x, order, dist = NULL, ...)

## S3 method for class 'hclust'
permute(x, order, dist = NULL, ...)

Arguments

x an object (a list, a vector, a dist object, a matrix, an array or any other object
which provides dim and standard subsetting with "[").
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order an object of class ser_permutation which contains suitable permutation vectors
for x. Alternatively, a character string with the name of a seriation method
appropriate for x can be specified (see seriate()). This will perform seriation
and permute x. The value TRUE will permute using the default seriation method.

... if order is the name of a seriation method, then additional arguments are passed
on to seriate().

margin specifies the dimensions to be permuted as a vector with dimension indices.
If NULL, order needs to contain a permutation for all dimensions. If a single
margin is specified, then order can also contain a single permutation vector.
margin are ignored.

dist the distance matrix used to create the dendrogram. Only needed if order is the
name of a seriation method.

Details

The permutation vectors in ser_permutation are suitable if the number of permutation vectors
matches the number of dimensions of x and if the length of each permutation vector has the same
length as the corresponding dimension of x.

For 1-dimensional/1-mode data (list, vector, dist), order can also be a single permutation vector
of class ser_permutation_vector or data which can be automatically coerced to this class (e.g. a
numeric vector).

For dendrogram and hclust, subtrees are rotated to represent the order best possible. If the order is
not achieved perfectly then the user is warned. See also reorder.hclust() for reordering hclust
objects.

Value

A permuted object of the same class as x.

Author(s)

Michael Hahsler

See Also

Other permutation: get_order(), permutation_vector2matrix(), ser_dist(), ser_permutation(),
ser_permutation_vector()

Examples

# List data types for permute
methods("permute")

# Permute matrix
m <- matrix(rnorm(10), 5, 2, dimnames = list(1:5, LETTERS[1:2]))
m

# Permute rows and columns
o <- ser_permutation(5:1, 2:1)
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o

permute(m, o)

## permute only columns
permute(m, o, margin = 2)

## permute using PCA seriation
permute(m, "PCA")

## permute only rows using PCA
permute(m, "PCA", margin = 1)

# Permute data.frames using heatmap seration (= hierarchical
# clustering + optimal leaf ordering)
df <- as.data.frame(m)
permute(df, "Heatmap")

# Permute objects in a dist object
d <- dist(m)
d

permute(d, c(3, 2, 1, 4, 5))

permute(d, "Spectral")

# Permute a list
l <- list(a = 1:5, b = letters[1:3], c = 0)
l

permute(l, c(2, 3, 1))

# Permute to reorder dendrogram (see also reorder.hclust)
hc <- hclust(d)
plot(hc)

plot(permute(hc, 5:1))
plot(permute(hc, 5:1, incompartible = "stop"))

plot(permute(hc, "OLO", dist = d))
plot(permute(hc, "GW", dist = d))
plot(permute(hc, "MDS", dist = d))
plot(permute(hc, "TSP", dist = d))

pimage Permutation Image Plot

Description

Provides methods for matrix shading, i.e., displaying a color image for matrix (including correlation
matrices and data frames) and dist objects given an optional permutation. The plot arranges col-
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ored rectangles to represent the values in the matrix. This visualization is also know as a heatmap.
Implementations based on the grid graphics engine and based n ggplot2 are provided.

Usage

pimage(x, order = FALSE, ...)

## S3 method for class 'matrix'
pimage(
x,
order = FALSE,
col = NULL,
main = "",
xlab = "",
ylab = "",
zlim = NULL,
key = TRUE,
keylab = "",
symkey = TRUE,
upper_tri = TRUE,
lower_tri = TRUE,
diag = TRUE,
row_labels = NULL,
col_labels = NULL,
prop = isSymmetric(x),
flip_axes = FALSE,
reverse_columns = FALSE,
...,
newpage = TRUE,
pop = TRUE,
gp = NULL

)

## S3 method for class 'table'
pimage(x, order = NULL, ...)

## S3 method for class 'data.frame'
pimage(x, order = NULL, ...)

## S3 method for class 'dist'
pimage(
x,
order = NULL,
col = NULL,
main = "",
xlab = "",
ylab = "",
zlim = NULL,
key = TRUE,
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keylab = "",
symkey = TRUE,
upper_tri = TRUE,
lower_tri = TRUE,
diag = TRUE,
row_labels = NULL,
col_labels = NULL,
prop = TRUE,
flip_axes = FALSE,
reverse_columns = FALSE,
...,
newpage = TRUE,
pop = TRUE,
gp = NULL

)

ggpimage(x, order = NULL, ...)

## S3 method for class 'matrix'
ggpimage(
x,
order = NULL,
zlim = NULL,
upper_tri = TRUE,
lower_tri = TRUE,
diag = TRUE,
row_labels = NULL,
col_labels = NULL,
prop = isSymmetric(x),
flip_axes = FALSE,
reverse_columns = FALSE,
...

)

## S3 method for class 'dist'
ggpimage(
x,
order = NULL,
zlim = NULL,
upper_tri = TRUE,
lower_tri = TRUE,
diag = TRUE,
row_labels = NULL,
col_labels = NULL,
prop = TRUE,
flip_axes = FALSE,
reverse_columns = FALSE,
...
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)

Arguments

x a matrix, a data.frame, or an object of class dist.

order a logical where FALSE means no reordering and TRUE applies a permutation us-
ing the default seriation method for the type of x. Alternatively, any object that
can be coerced to class ser_permutation can be supplied.

... if order is the name of a seriation method then further arguments are passed on
to the seriation method, otherwise they are ignored.

col a list of colors used. If NULL, a gray scale is used (for matrix larger values are
displayed darker and for dist smaller distances are darker). For matrices con-
taining logical data, black and white is used. For matrices containing negative
values a symmetric diverging color palette is used.

main plot title.

xlab, ylab labels for the x and y axes.

zlim vector with two elements giving the range (min, max) for representing the values
in the matrix.

key logical; add a color key? No key is available for logical matrices.

keylab string plotted next to the color key.

symkey logical; if x contains negative values, should the color palate be symmetric (zero
is in the middle)?

upper_tri, lower_tri, diag
a logical indicating whether to show the upper triangle, the lower triangle or the
diagonal of the (distance) matrix.

row_labels, col_labels
a logical indicating if row and column labels in x should be displayed. If NULL
then labels are displayed if the x contains the appropriate dimname and the num-
ber of labels is 25 or less. A character vector of the appropriate length with labels
can also be supplied.

prop logical; change the aspect ratio so cells in the image have a equal width and
height.

flip_axes logical; exchange rows and columns for plotting.
reverse_columns

logical; revers the order of how the columns are displayed.

newpage, pop, gp Start plot on a new page, pop the viewports after plotting, and use the supplied
gpar object (see grid).

Details

Plots a matrix in its original row and column orientation (image in stats reverses the rows). This
means, in a plot the columns become the x-coordinates and the rows the y-coordinates (in reverse
order).

Grid-based plot: The viewports used for plotting are called: "plot", "image" and "colorkey".
Use grid functions to manipulate the plots (see Examples section).
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ggplot2-based plot: A ggplot2 object is returned. Colors, axis limits and other visual aspects can
be added using standard ggplot2 functions (labs, scale_fill_continuous, labs, etc.).

Value

Nothing.

Author(s)

Christian Buchta and Michael Hahsler

See Also

Other plots: VAT(), bertinplot(), dissplot(), hmap(), palette()

Examples

set.seed(1234)
data(iris)
x <- as.matrix(iris[sample(nrow(iris), 20) , -5])

pimage(x)

# Show all labels and flip axes, reverse columns, or change colors
pimage(x, prop = TRUE)
pimage(x, flip_axes = TRUE)
pimage(x, reverse_columns = TRUE)
pimage(x, col = grays(100))

# A matrix with positive and negative values
x_scaled <- scale(x)
pimage(x_scaled)

# Use reordering
pimage(x_scaled, order = TRUE)
pimage(x_scaled, order = "Heatmap")

## Example: Distance Matrix
# Show a reordered distance matrix (distances between rows).
# Dark means low distance. The aspect ratio is automatically fixed to 1:1
# using prop = TRUE
d <- dist(x)
pimage(d)
pimage(d, order = TRUE)

# Supress the upper triangle and diagonal
pimage(d, order = TRUE, upper = FALSE, diag = FALSE)

# Show only distances that are smaller than 2 using limits on z.
pimage(d, order = TRUE, zlim = c(0, 3))

## Example: Correlation Matrix
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# we calculate correlation between rows and seriate the matrix
# and seriate by converting the correlations into distances.
# pimage reorders then rows and columns with c(o, o).
r <- cor(t(x))
o <- seriate(as.dist(sqrt(1 - r)))
pimage(r, order = c(o, o),

upper = FALSE, diag = FALSE,
zlim = c(-1, 1),
reverse_columns = TRUE,
main = "Correlation matrix")

# Add to the plot using functions in package grid
# Note: pop = FALSE allows us to manipulate viewports
library("grid")
pimage(x, order = TRUE, pop = FALSE)

# available viewports are: "main", "colorkey", "plot", "image"
current.vpTree()

# Highlight cell 2/2 with a red arrow
# Note: columns are x and rows are y.
downViewport(name = "image")
grid.lines(x = c(1, 2), y = c(-1, 2), arrow = arrow(),

default.units = "native", gp = gpar(col = "red", lwd = 3))

# add a red box around the first 4 rows of the 2nd column
grid.rect(x = 1 + .5 , y = 4 + .5, width = 1, height = 4,

hjust = 0, vjust = 1,
default.units = "native", gp = gpar(col = "red", lwd = 3, fill = NA))

## remove the viewports
popViewport(0)

## put several pimages on a page (use grid viewports and newpage = FALSE)
# set up grid layout
library(grid)
grid.newpage()
top_vp <- viewport(layout = grid.layout(nrow = 1, ncol = 2,

widths = unit(c(.4, .6), unit = "npc")))
col1_vp <- viewport(layout.pos.row = 1, layout.pos.col = 1, name = "col1_vp")
col2_vp <- viewport(layout.pos.row = 1, layout.pos.col = 2, name = "col2_vp")
splot <- vpTree(top_vp, vpList(col1_vp, col2_vp))
pushViewport(splot)

seekViewport("col1_vp")
o <- seriate(d)
pimage(x, c(o, NA), col_labels = FALSE, main = "Data",

newpage = FALSE)

seekViewport("col2_vp")
## add the reordered dissimilarity matrix for rows
pimage(d, o, main = "Distances",

newpage = FALSE)
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popViewport(0)

##-------------------------------------------------------------
## ggplot2 Examples
if (require("ggplot2")) {

library("ggplot2")

set.seed(1234)
data(iris)
x <- as.matrix(iris[sample(nrow(iris), 20) , -5])

ggpimage(x)

# Show all labels and flip axes, reverse columns
ggpimage(x, prop = TRUE)
ggpimage(x, flip_axes = TRUE)
ggpimage(x, reverse_columns = TRUE)

# A matrix with positive and negative values
x_scaled <- scale(x)
ggpimage(x_scaled)

# Use reordering
ggpimage(x_scaled, order = TRUE)
ggpimage(x_scaled, order = "Heatmap")

## Example: Distance Matrix
# Show a reordered distance matrix (distances between rows).
# Dark means low distance. The aspect ratio is automatically fixed to 1:1
# using prop = TRUE
d <- dist(x)
ggpimage(d)
ggpimage(d, order = TRUE)

# Supress the upper triangle and diagonal
ggpimage(d, order = TRUE, upper = FALSE, diag = FALSE)

# Show only distances that are smaller than 2 using limits on z.
ggpimage(d, order = TRUE, zlim = c(0, 2))

## Example: Correlation Matrix
# we calculate correlation between rows and seriate the matrix
r <- cor(t(x))
o <- seriate(as.dist(sqrt(1 - r)))
ggpimage(r, order = c(o, o),

upper = FALSE, diag = FALSE,
zlim = c(-1, 1),
reverse_columns = TRUE) + labs(title = "Correlation matrix")

## Example: Custom themes and colors



46 Psych24

# Reorder matrix, use custom colors, add a title,
# and hide colorkey.
ggpimage(x) +

theme(legend.position = "none") +
labs(title = "Random Data") + xlab("Variables")

# Add lines
ggpimage(x) +

geom_hline(yintercept = seq(0, nrow(x)) + .5) +
geom_vline(xintercept = seq(0, ncol(x)) + .5)

# Use ggplot2 themes with theme_set
old_theme <- theme_set(theme_linedraw())
ggpimage(d)
theme_set(old_theme)

# Use custom color palettes: Gray scale, Colorbrewer (provided in ggplot2) and colorspace
ggpimage(d, order = seriate(d), upper_tri = FALSE) +

scale_fill_gradient(low = "black", high = "white", na.value = "white")

ggpimage(d, order = seriate(d), upper_tri = FALSE) +
scale_fill_distiller(palette = "Spectral", direction = +1, na.value = "white")

ggpimage(d, order = seriate(d), upper_tri = FALSE) +
colorspace::scale_fill_continuous_sequential("Reds", rev = FALSE, na.value = "white")

}

Psych24 Results of 24 Psychological Test for 8th Grade Students

Description

A data set collected by Holzinger and Swineford (1939) which consists of the results of 24 psy-
chological tests given to 145 seventh and eighth grade students in a Chicago suburb. This data set
contains the correlation matrix for the 24 test results. The data set was also used as an example for
visualization of cluster analysis by Ling (1973).

Format

A 24 x 24 correlation matrix.

References

Holzinger, K. L., Swineford, F. (1939): A study in factor analysis: The stability of a bi-factor
solution. Supplementary Educational Monograph, No. 48. Chicago: University of Chicago Press.

Ling, R. L. (1973): A computer generated aid for cluster analysis. Communications of the ACM,
16(6), pp. 355–361.



register_DendSer 47

Examples

data("Psych24")

## create a dist object and also get rid of the one negative entry in the
## correlation matrix
d <- as.dist(1 - abs(Psych24))

pimage(d)

## do hclust as in Ling (1973)
hc <- hclust(d, method = "complete")
plot(hc)

pimage(d, hc)

## use seriation
order <- seriate(d, method = "tsp")
#order <- seriate(d, method = "tsp", control = list(method = "concorde"))
pimage(d, order)

register_DendSer Register Seriation Methods from Package DendSer

Description

Register the DendSer dendrogram seriation method and the ARc criterion (Earle and Hurley, 2015)
for use with seriate().

Usage

register_DendSer()

Details

Registers the method "DendSer" for seriate. DendSer is a fast heuristic for reordering dendrograms
developed by Earle and Hurley (2015) able to use different criteria.

control for seriate() with method "DendSer" accepts the following parameters:

• "h" or "method": A dendrogram or a method for hierarchical clustering (see hclust). Default:
complete-link.

• "criterion": A seriation criterion to optimize (see list_criterion_methods("dist").
Default: "BAR" (Banded anti-Robinson from with 20% band width).

• "verbose": a logical; print progress information?

• "DendSer_args": additional arguments for DendSer::DendSer().

For convenience, the following methods (for different cost functions) are also provided:

• "DendSer_ARc" (anti-robinson form),
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• "DendSer_BAR" (banded anti-Robinson form),

• "DendSer_LPL" (lazy path length),

• "DendSer_PL" (path length).

Note: Package DendSer needs to be installed.

Value

Nothing.

Author(s)

Michael Hahsler based on code by Catherine B. Hurley and Denise Earle

References

D. Earle, C. B. Hurley (2015): Advances in dendrogram seriation for application to visualization.
Journal of Computational and Graphical Statistics, 24(1), 1–25.

See Also

DendSer::DendSer()

Other seriation: register_GA(), register_optics(), register_smacof(), register_tsne(),
register_umap(), registry_for_seriation_methods, seriate(), seriate_best()

Examples

## Not run:
register_DendSer()
get_seriation_method("dist", "DendSer")

d <- dist(random.robinson(20, pre=TRUE))

## use Banded AR form with default clustering (complete-link)
o <- seriate(d, "DendSer_BAR")
pimage(d, o)

## use different hclust method (Ward) and AR as the cost function for
## dendrogram reordering
o <- seriate(d, "DendSer", control = list(method = "ward.D2", criterion = "AR"))
pimage(d, o)

## End(Not run)
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register_GA Register a Genetic Algorithm Seriation Method

Description

Register a GA-based seriation metaheuristic for use with seriate().

Usage

register_GA()

gaperm_mixedMutation(ismProb = 0.8)

Arguments

ismProb probability to use GA::gaperm_ismMutation() (inversion) versus GA::gaperm_simMutation()
(simple insertion).

Details

Registers the method "GA" for seriate(). This method can be used to optimize any criterion in
package seriation.

The GA uses by default the ordered cross-over (OX) operator. For mutation, the GA uses a mix-
ture of simple insertion and simple inversion operators. This mixed operator is created using
seriation::gaperm_mixedMutation(ismProb = .8), where ismProb is the probability that the
simple insertion mutation operator is used. See package GA for a description of other available
cross-over and mutation operators for permutations. The appropriate operator functions in GA start
with gaperm_.

We warm start the GA using "suggestions" given by several heuristics. Set "suggestions" to NA
to start with a purely random initial population.

See Example section for available control parameters.

Note: Package GA needs to be installed.

Value

Nothing.

Author(s)

Michael Hahsler

References

Luca Scrucca (2013): GA: A Package for Genetic Algorithms in R. Journal of Statistical Software,
53(4), 1–37. URL doi:10.18637/jss.v053.i04.

https://doi.org/10.18637/jss.v053.i04
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See Also

Other seriation: register_DendSer(), register_optics(), register_smacof(), register_tsne(),
register_umap(), registry_for_seriation_methods, seriate(), seriate_best()

Examples

## Not run:
register_GA()
get_seriation_method("dist", "GA")

data(SupremeCourt)
d <- as.dist(SupremeCourt)

## optimize for linear seriation criterion (LS)
o <- seriate(d, "GA", criterion = "LS", verbose = TRUE)
pimage(d, o)

## Note that by default the algorithm is already seeded with a LS heuristic.
## This run is no warm start (no suggestions) and increase run to 100
o <- seriate(d, "GA", criterion = "LS", suggestions = NA, run = 100,

verbose = TRUE)
pimage(d, o)

o <- seriate(d, "GA", criterion = "LS", suggestions = NA, run = 100,
verbose = TRUE, )

pimage(d, o)

## End(Not run)

register_optics Register Seriation Based on OPTICS

Description

Use ordering points to identify the clustering structure (OPTICS) for seriate().

Usage

register_optics()

Details

Registers the method "optics" for seriate(). This method applies the OPTICS ordering algo-
rithm implemented in dbscan::optics() to create an ordering.

Note: Package dbscan needs to be installed.
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Value

Nothing.

References

Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Joerg Sander (1999). OPTICS: Ordering
Points To Identify the Clustering Structure. ACM SIGMOD international conference on Manage-
ment of data, ACM Press, pp. 49-60. doi:10.1145/304181.304187

See Also

dbscan::optics().

Other seriation: register_DendSer(), register_GA(), register_smacof(), register_tsne(),
register_umap(), registry_for_seriation_methods, seriate(), seriate_best()

Examples

## Not run:
register_optics()
get_seriation_method("dist", "optics")

d <- dist(random.robinson(50, pre=TRUE, noise=.1))

o <- seriate(d, method = "optics")
pimage(d, o)

## End(Not run)

register_smacof Register Seriation Methods from Package smacof

Description

Registers the "MDS_smacof" method for seriate() based on multidimensional scaling using stress
majorization and the corresponding "smacof_stress0" criterion implemented in package smacof
(de Leeuw & Mair, 2009).

Usage

register_smacof()

https://doi.org/10.1145/304181.304187
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Details

Seriation method "smacof" implements stress majorization with several transformation functions.
These functions are passed on as the type control parameter. We default to "ratio", which to-
gether with "interval" performs metric MDS. "ordinal" can be used for non-metric MDS. See
smacof::smacofSym() for details on the control parameters.

The corresponding criterion called "smacof_stress0" is also registered. There additional parame-
ter type is used to specify the used transformation function. It should agree with the function used
for seriation. See smacof::stress0() for details on the stress calculation.

Note: Package smacof needs to be installed.

Value

Nothing.

References

Jan de Leeuw, Patrick Mair (2009). Multidimensional Scaling Using Majorization: SMACOF in R.
Journal of Statistical Software, 31(3), 1-30. doi:10.18637/jss.v031.i03

See Also

Other seriation: register_DendSer(), register_GA(), register_optics(), register_tsne(),
register_umap(), registry_for_seriation_methods, seriate(), seriate_best()

Examples

## Not run:
register_smacof()

get_seriation_method("dist", "MDS_smacof")

d <- dist(random.robinson(20, pre = TRUE))

## use Banded AR form with default clustering (complete-link)
o <- seriate(d, "MDS_smacof", verbose = TRUE)
pimage(d, o)

# recalculate stress for the order
MDS_stress(d, o)

# ordinal MDS. stress needs to be calculated using the correct type with stress0
o <- seriate(d, "MDS_smacof", type = "ordinal", verbose = TRUE)
criterion(d, o, method = "smacof_stress0", type = "ordinal")

## End(Not run)

https://doi.org/10.18637/jss.v031.i03
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register_tsne Register Seriation Based on 1D t-SNE

Description

Use t-distributed stochastic neighbor embedding (t-SNE) for seriate().

Usage

register_tsne()

Details

Registers the method "tsne" for seriate(). This method applies 1D t-SNE to a data matrix or a
distance matrix and extracts the order from the 1D embedding. To speed up the process, an initial
embedding is created using 1D multi-dimensional scaling (MDS) or principal components analysis
(PCA) which is improved by t-SNE.

The control parameter "mds" or "pca" controls if MDS (for distances) or PCA (for data matrices)
is used to create an initial embedding. See Rtsne::Rtsne() to learn about the other available
control parameters.

Perplexity is automatically set as the minimum between 30 and the number of observations. It can
be also specified using the control parameter "preplexity".

Note: Package Rtsne needs to be installed.

Value

Nothing.

References

van der Maaten, L.J.P. & Hinton, G.E., 2008. Visualizing High-Dimensional Data Using t-SNE.
Journal of Machine Learning Research, 9, pp.2579-2605.

See Also

Rtsne::Rtsne()

Other seriation: register_DendSer(), register_GA(), register_optics(), register_smacof(),
register_umap(), registry_for_seriation_methods, seriate(), seriate_best()

Examples

## Not run:
register_tsne()

# distances
get_seriation_method("dist", "tsne")
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data(SupremeCourt)
d <- as.dist(SupremeCourt)

o <- seriate(d, method = "tsne", verbose = TRUE)
pimage(d, o)

# look at the returned configuration and plot it
attr(o[[1]], "configuration")
plot_config(o)

# the t-SNE results are also available as an attribute (see ? Rtsne::Rtsne)
attr(o[[1]], "model")

## matrix
get_seriation_method("matrix", "tsne")

data("Zoo")
x <- Zoo

x[,"legs"] <- (x[,"legs"] > 0)

# t-SNE does not allow duplicates
x <- x[!duplicated(x), , drop = FALSE]

class <- x$class
label <- rownames(x)
x <- as.matrix(x[,-17])

o <- seriate(x, method = "tsne", eta = 10, verbose = TRUE)
pimage(x, o, prop = FALSE, row_labels = TRUE, col_labels = TRUE)

# look at the row embedding
plot_config(o[[1]], col = class)

## End(Not run)

register_umap Register Seriation Based on 1D UMAP

Description

Use uniform manifold approximation and projection (UMAP) to embed the data on the number line
and create a order for seriate().

Usage

register_umap()
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Details

Registers the method "umap" for seriate(). This method applies 1D UMAP to a data matrix or a
distance matrix and extracts the order from the 1D embedding.

Control parameter n_epochs can be increased to find a better embedding.

The returned seriation permutation vector has an attribute named embedding containing the umap
embedding.

Note: Package umap needs to be installed.

Value

Nothing.

References

McInnes, L and Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension
Reduction, ArXiv e-prints 1802.03426, 2018.

See Also

umap::umap() in umap.

Other seriation: register_DendSer(), register_GA(), register_optics(), register_smacof(),
register_tsne(), registry_for_seriation_methods, seriate(), seriate_best()

Examples

## Not run:
register_umap()

## distances
get_seriation_method("dist", "umap")

data(SupremeCourt)
d <- as.dist(SupremeCourt)

o <- seriate(d, method = "umap", verbose = TRUE)
pimage(d, o)

# look at the returned embedding and plot it
attr(o[[1]], "configuration")
plot_config(o)

## matrix
get_seriation_method("matrix", "umap")

data("Zoo")
Zoo[,"legs"] <- (Zoo[,"legs"] > 0)
x <- as.matrix(Zoo[,-17])
label <- rownames(Zoo)
class <- Zoo$class



56 registry_for_criterion_methods

o <- seriate(x, method = "umap", verbose = TRUE)
pimage(x, o)

plot_config(o[[1]], col = class)

## End(Not run)

registry_for_criterion_methods

Registry for Criterion Methods

Description

A registry to manage methods used by criterion() to calculate a criterion value given data and a
permutation.

Usage

registry_criterion

list_criterion_methods(kind, names_only = TRUE)

get_criterion_method(kind, name)

set_criterion_method(
kind,
name,
fun,
description = NULL,
merit = NA,
control = list(),
verbose = FALSE,
...

)

## S3 method for class 'criterion_method'
print(x, ...)

Arguments

kind the data type the method works on. For example, "dist", "matrix" or "array".

names_only logical; return only the method name. FALSE returns also the method descrip-
tions.

name the name for the method used to refer to the method in the function criterion().

fun a function containing the method’s code.

description a description of the method. For example, a long name.
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merit logical; indicating if the criterion measure is a merit (TRUE) or a loss (FALSE)
measure.

control a list with control arguments and default values.

verbose logical; print a message when a new method is registered.

... further information that is stored for the method in the registry.

x an object of class "criterion_method" to be printed.

Format

An object of class criterion_registry (inherits from registry) of length 21.

Details

All methods below are convenience methods for the registry named registry_criterion.

list_criterion_method() lists all available methods for a given data type (kind). The result is
a vector of character strings with the short names of the methods. If kind is missing, then a list of
methods is returned.

get_criterion_method() returns information (including the implementing function) about a given
method in form of an object of class "criterion_method".

With set_criterion_method() new criterion methods can be added by the user. The implement-
ing function (fun) needs to have the formal arguments x, order, ..., where x is the data object,
order is an object of class ser_permutation_vector and ... can contain additional information for
the method passed on from criterion(). The implementation has to return the criterion value as
a scalar.

Value

• list_criterion_method() results is a vector of character strings with the names of the meth-
ods used for criterion().

• get_criterion_method() returns a given method in form of an object of class "criterion_method".

Author(s)

Michael Hahsler

See Also

This registry uses registry::registry.

Other criterion: criterion()

Examples

## the registry
registry_criterion

# List all criterion calculation methods by type
list_criterion_methods()
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# List methods for matrix
list_criterion_methods("matrix")

# get more description
list_criterion_methods("matrix", names_only = FALSE)

# get a specific method
get_criterion_method(kind = "dist", name = "AR_d")

# Define a new method (sum of the diagonal elements)

## 1. implement a function to calculate the measure
criterion_method_matrix_foo <- function(x, order, ...) {
if(!is.null(order)) x <- permute(x,order)

sum(diag(x))
}

## 2. Register new method
set_criterion_method("matrix", "DiagSum", criterion_method_matrix_foo,

description = "Calculated the sum of all diagonal entries", merit = FALSE)

list_criterion_methods("matrix")
get_criterion_method("matrix", "DiagSum")

## 3. use all criterion methods (including the new one)
criterion(matrix(1:9, ncol = 3))

registry_for_seriation_methods

Registry for Seriation Methods

Description

A registry to manage methods used by seriate().

Usage

registry_seriate

list_seriation_methods(kind, names_only = TRUE)

get_seriation_method(kind, name)

set_seriation_method(
kind,
name,
definition,
description = NULL,
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control = list(),
randomized = FALSE,
optimizes = NA_character_,
verbose = FALSE,
...

)

## S3 method for class 'seriation_method'
print(x, ...)

Arguments

kind the data type the method works on. For example, "dist", "matrix" or "array".
If missing, then methods for any type are shown.

names_only logical; return only the method name. FALSE returns also the method descrip-
tions.

name the name for the method used to refer to the method in seriate().
definition a function containing the method’s code.
description a description of the method. For example, a long name.
control a list with control arguments and default values.
randomized logical; does the algorithm use randomization and re-running the algorithm sev-

eral times will lead to different results (see: seriate_rep()).
optimizes what criterion does the algorithm try to optimize (see: list_criterion_methods()).
verbose logical; print a message when a new method is registered.
... further information that is stored for the method in the registry.
x an object of class "seriation_method" to be printed.

Format

An object of class seriation_registry (inherits from registry) of length 58.

Details

The functions below are convenience function for the registry registry_seriate.

list_seriation_method() lists all available methods for a given data type (kind) (e.g., "dist",
"matrix"). The result is a vector of character strings with the method names that can be used in
function seriate(). If kind is missing, then a list of methods is returned.

get_seriation_method() returns detailed information for a given method in form of an object
of class "seriation_method". The information includes a description, parameters and the imple-
menting function.

With set_seriation_method() new seriation methods can be added by the user. The implement-
ing function (definition) needs to have the formal arguments x, control and, for arrays and
matrices margin, where x is the data object and control contains a list with additional information
for the method passed on from seriate(), and margin is a vector specifying what dimensions
should be seriated. The implementation has to return a list of objects which can be coerced into
ser_permutation_vector objects (e.g., integer vectors). The elements in the list have to be in
corresponding order to the dimensions of x.
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Value

• list_seriation_method() result is a vector of character strings with the names of the meth-
ods. These names are used for methods in seriate().

• get_seriation_method() returns a given method in form of an object of class "seriation_method".

Author(s)

Michael Hahsler

See Also

This registry uses registry::registry.

Other seriation: register_DendSer(), register_GA(), register_optics(), register_smacof(),
register_tsne(), register_umap(), seriate(), seriate_best()

Examples

# Registry
registry_seriate

# List all seriation methods by type
list_seriation_methods()

# List methods for matrix seriation
list_seriation_methods("matrix")

get_seriation_method(name = "BEA")

# Example for defining a new seriation method (reverse identity function for matrix)

# 1. Create the seriation method: Reverse the row order
# (NA means no seriation is applied to columns)
seriation_method_reverse_rows <- function(x, control = NULL, margin = c(1, 2)) {

list(rev(seq(nrow(x))), NA)[margin]
}

# 2. Register new method
set_seriation_method("matrix", "Reverse_rows", seriation_method_reverse_rows,

description = "Reverse identity order", control = list())

list_seriation_methods("matrix")
get_seriation_method("matrix", "reverse_rows")

# 3. Use the new seriation methods
seriate(matrix(1:12, ncol = 3), "reverse_rows")
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reorder.hclust Reorder Dendrograms using Optimal Leaf Ordering

Description

Reorder method for dendrograms for optimal leaf ordering.

Usage

## S3 method for class 'hclust'
reorder(x, dist, method = "OLO", ...)

Arguments

x an object of class hclust.

dist an object of class dist with dissimilarities between the objects in x.

method a character string with the name of the used measure. Available are:

• "OLO" (optimal leaf ordering; Bar-Joseph et al., 2001) implemented in this
package and

• "GW" (Gruvaeus and Wainer, 1972) from package gclus.

... further arguments are currently ignored.

Details

Minimizes the distance between neighboring objects (leaf nodes) in the dendrogram by flipping the
order of subtrees. The algorithm by Gruvaeus and Wainer is implemented in package gclus (Hurley
2004).

Value

A reordered hclust object.

Author(s)

Michael Hahsler

References

Bar-Joseph, Z., E. D. Demaine, D. K. Gifford, and T. Jaakkola. (2001): Fast Optimal Leaf Ordering
for Hierarchical Clustering. Bioinformatics, 17(1), 22–29.

Gruvaeus, G. and Wainer, H. (1972): Two Additions to Hierarchical Cluster Analysis, British Jour-
nal of Mathematical and Statistical Psychology, 25, 200–206.

Hurley, Catherine B. (2004): Clustering Visualizations of Multidimensional Data. Journal of Com-
putational and Graphical Statistics, 13(4), 788–806.
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See Also

gclus::reorder.hclust()

Examples

## cluster European cities by distance
data("eurodist")
d <- as.dist(eurodist)
hc <- hclust(eurodist)

## plot original dendrogram and the reordered dendrograms
plot(hc)
plot(reorder(hc, d, method = "GW"))
plot(reorder(hc, d, method = "OLO"))

seriate Seriate Dissimilarity Matrices, Matrices or Arrays

Description

Tries to find a linear order for objects using data in the form of a dissimilarity matrix (two-way
one-mode data), a data matrix (two-way two-mode data), or a data array (k-way k-mode data). The
order can then be used to reorder the dissimilarity matrix/data matrix using permute().

Usage

seriate(x, ...)

## S3 method for class 'dist'
seriate(x, method = "Spectral", control = NULL, rep = 1L, ...)

## S3 method for class 'matrix'
seriate(x, method = "PCA", control = NULL, margin = c(1L, 2L), rep = 1L, ...)

## S3 method for class 'array'
seriate(
x,
method = "PCA",
control = NULL,
margin = seq(length(dim(x))),
rep = 1L,
...

)

## S3 method for class 'data.frame'
seriate(
x,
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method = "Heatmap",
control = NULL,
margin = c(1L, 2L),
rep = 1L,
...

)

## S3 method for class 'table'
seriate(x, method = "CA", control = NULL, margin = c(1L, 2L), ...)

Arguments

x the data.

... further arguments are added to the control list.

method a character string with the name of the seriation method (default: varies by data
type).

control a list of control options passed on to the seriation algorithm.

rep number of random restarts for randomized methods. Uses seriate_rep().

margin an integer vector giving the margin indices (dimensions) to be seriated. For
example, for a matrix, 1 indicates rows, 2 indicates columns, c(1 ,2) means
rows and columns. Unseriated margins return the identity seriation order for
that margin.

Details

Seriation methods are managed via a registry. See list_seriation_methods() for help. In the
following, we focus on discussing the built-in methods that are registered automatically by the
package seriation.

The available control options, default settings, and a description for each algorithm can be re-
trieved using get_seriation_method(name = "<seriation method>"). Some control parameters
are also described in more detail below.

Some methods are very slow, and progress can be printed using the control parameter verbose =
TRUE.

Many seriation methods (heuristically) optimize (minimize or maximize) an objective function of-
ten called seriation criterion. The value of the seriation criterion for a given order can be calculated
using criterion(). In this manual page, we include the criterion, which is optimized by each
method using bold font. If no criterion is mentioned, then the method does not directly optimize a
criterion. A definition of the different seriation criteria can be found on the criterion() manual
page.

Seriation methods for distance matrices (dist)
One-mode two-way data must be provided as a dist object (not a symmetric matrix). Similarities
have to be transformed into dissimilarities. Seriation algorithms fall into different groups based
on the approach. In the following, we describe the currently implemented methods. A list with
all methods and the available parameters is available here. Hahsler (2017) for a more detailed
description and an experimental comparison of the most popular methods.

Dendrogram leaf order

https://mhahsler.github.io/seriation/seriation_methods.html
https://michael.hahsler.net/research/paper/EJOR_seriation_2016.pdf
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These methods create a dendrogram using hierarchical clustering and then derive the seriation order
from the leaf order in the dendrogram. Leaf reordering may be applied.

• Hierarchical clustering: "HC", "HC_single", "HC_complete", "HC_average", "HC_ward"
Uses the order of the leaf nodes in a dendrogram obtained by hierarchical clustering as a
simple seriation technique. This method applies hierarchical clustering (stats::hclust())
to x. The clustering method can be given using a "linkage" element in the control list. If
omitted, the default "complete" is used. For convenience, the other methods are provided as
shortcuts.

• Reordered by the Gruvaeus and Wainer heuristic: "GW", "GW_single", "GW_average",
"GW_complete", "GW_ward" (Gruvaeus and Wainer, 1972)
Method "GW" uses an algorithm developed by Gruvaeus and Wainer (1972) as implemented
gclus::reorder.hclust() (Hurley 2004). The clusters are ordered at each level so that the
objects at the edge of each cluster are adjacent to the nearest object outside the cluster. The
method produces a unique order.
The methods start with a dendrogram created by hclust(). As the "linkage" element in
the control list, a clustering method (default "average") can be specified. Alternatively, an
stats::hclust object can be supplied using an element named "hclust".
A dendrogram (binary tree) has 2n−1 internal nodes (subtrees) and the same number of leaf
orderings. That is, at each internal node, the left and right subtree (or leaves) can be swapped
or, in terms of a dendrogram, be flipped. The leaf-node reordering to minimize
Minimizes the Hamiltonian path length (restricted by the dendrogram).

• Reordered by optimal leaf ordering: "OLO", "OLO_single", "OLO_average", "OLO_complete",
"OLO_ward" (Bar-Joseph et al., 2001)
Starts with a dendrogram and produces an optimal leaf ordering that minimizes the sum of
the distances along the (Hamiltonian) path connecting the leaves in the given order. The
algorithm’s time complexity is O(n3). Note that non-finite distance values are not allowed.
Minimizes the Hamiltonian path length (restricted by the dendrogram).

• Dendrogram seriation: "DendSer" (Earle and Hurley, 2015)
Use heuristic dendrogram seriation to optimize for various criteria. The DendSer code has to
be first registered. A detailed description can be found on the manual page for register_DendSer().

Dimensionality reduction

Find a seriation order by reducing the dimensionality to 1 dimension. This is typically done by min-
imizing a stress measure or the reconstruction error. Note that dimensionality reduction to a single
dimension is a very difficult discrete optimization problem. For example, MDS algorithms used for
a single dimension tend to end up in local optima (see Maier and De Leeuw, 2015). However, gen-
erally, ordering along a single component of MDS provides good results sufficient for applications
like visualization.

• Classical metric multidimensional scaling: "MDS"
Orders along the 1D classical metric multidimensional scaling. control parameters are
passed on to stats::cmdscale().

• Isometric feature mapping: "isomap" (Tenenbaum, 2000)
Orders along the 1D isometric feature mapping. control parameters are passed on to vegan::isomap()



seriate 65

• Kruskal’s non-metric multidimensional scaling: "isoMDS", "monoMDS", "metaMDS" (Kruskal,
1964)
Orders along the 1D Kruskal’s non-metric multidimensional scaling. Package vegan provides
an alternative implementation called monoMDS and a version that uses random restarts for sta-
bility called metaMDS. control parameters are passed on to MASS::isoMDS(), vegan::monoMDS()
or vegan::metaMDS().

• Sammon’s non-linear mapping: "Sammon_mapping" (Sammon, 1969)
Orders along the 1D Sammon’s non-linear mapping. control parameters are passed on to
MASS::sammon().

• Angular order of the first two eigenvectors: "MDS_angle"
Finds a 2D configuration using MDS (stats::cmdscale()) to approximate the eigenvectors
of the covariance matrix in the original data matrix. Orders by the angle in this space and splits
the order by the larges gap between adjacent angles. A similar method was used by Friendly
(2002) to order variables in correlation matrices by angles of first two eigenvectors.

• Smacof: "MDS_smacof" (de Leeuw and Mair, 2009)
Perform seriation using stress majorization with several transformation functions. This method
has to be registered first using register_smacof().

Optimization
These methods try to optimize a seriation criterion directly, typically using a heuristic approach.

• Anti-Robinson seriation by simulated annealing: "ARSA" (Brusco et al 2008)
The algorithm automatically finds a suitable start temperature and calculates the needed num-
ber of iterations. The algorithm gets slow for a large number of objects. The speed can be
improved by lowering the cooling parameter "cool" or increasing the minimum temperature
"tmin". However, this will decrease the seriation quality.
Directly minimizes the linear seriation criterion (LS).

• Complete Enumeration: "Enumerate"
This method finds the optimal permutation given a seriation criterion by complete enumera-
tion of all permutations. The criterion is specified as the control parameters "criterion".
Default is the weighted gradient measure. Use "verbose = TRUE" to see the progress.
Note: The number of permutations for n objects is n!. Complete enumeration is only possible
for tiny problems (<10 objects) and is limited on most systems to a problem size of up to 12
objects.

• Gradient measure seriation by branch-and-bound: "BBURCG", "BBWRCG" (Brusco and Stahl
2005)
The method uses branch-and-bound to minimize the unweighted gradient measure ("BBURCG")
and the weighted gradient measure ("BBWRCG"). This type of optimization is only feasible
for a small number of objects (< 50 objects).
For BBURCG, the control parameter "eps" can be used to relax the problem by defining that a
distance needs to be eps larger to count as a violation. This relaxation will improve the speed,
but miss some Robinson events. The default value is 0.

• Genetic Algorithm: "GA"
The GA code has to be first registered. A detailed description can be found on the manual
page for register_GA().
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• Quadratic assignment problem seriation: "QAP_LS", "QAP_2SUM", "QAP_BAR", "QAP_Inertia"
(Hahsler, 2017)
Formulates the seriation problem as a quadratic assignment problem and applies a simulated
annealing solver to find a good solution. These methods minimize the Linear Seriation Prob-
lem (LS) formulation (Hubert and Schultz 1976), the 2-Sum Problem formulation (Barnard,
Pothen, and Simon 1993), the banded anti-Robinson form (BAR), or the inertia criterion.
control parameters are passed on to qap::qap(). An important parameter is rep to return
the best result from the given number of repetitions with random restarts. The default is 1, but
bigger numbers result in better and more stable results.

• General Simulated Annealing: "GSA"
Implement simulated annealing similar to the ARSA method. However, it can optimize for
any criterion measure defined in seriation. By default, the algorithm optimizes for the raw
gradient measure, and is warm started with the result of spectral seriation (2-Sum problem)
since Hahsler (2017) shows that 2-Sum solutions are similar to solutions for the gradient
measure. Use warmstart = "random" for no warm start.
The initial temperature t0 and minimum temperature tmin can be set. If t0 is not set, then it
is estimated by sampling uphill moves and setting t0 such that the median uphill move have
a probability of tinitialaccept. Using the cooling rate cool, the number of iterations to go
for t0 to tmin is calculated.
Several popular local neighborhood functions are provided, and new ones can be defined (see
LS). Local moves are tried in each iteration nlocal times the number of objects.
Note that this is an R implementation repeatedly calling the criterion function which is very
slow.

• Stochastic gradient descent: "SGD"
Starts with a solution and then performs stochastic gradient descent to find a close-by local
optimum given a specified criterion.
Important control parameters:

– "criterion": the criterion to optimize
– "init": initial seriation (an order or the name of a seriation method)
– "max_iter": number of trials

• Spectral seriation: "Spectral", "Spectral_norm" (Ding and He, 2004)
Spectral seriation uses a relaxation to minimize the 2-Sum Problem (Barnard, Pothen, and
Simon, 1993). It uses the order of the Fiedler vector of the similarity matrix’s (normalized)
Laplacian.
Spectral seriation gives a good trade-off between seriation quality, and scalability (see Hahsler,
2017).

• Traveling salesperson problem solver: "TSP"
Uses a traveling salesperson problem solver to minimize the Hamiltonian path length. The
solvers in TSP are used (see TSP::solve_TSP()). The solver method can be passed on via
the control argument, e.g., control = list(method = "two_opt"). Default is the est of 10
runs of arbitrary insertion heuristic with 2-opt improvement.
Since a tour returned by a TSP solver is a connected circle and we are looking for a path
representing a linear order, we need to find the best cutting point. Climer and Zhang (2006)
suggest adding a dummy city with equal distance to each other city before generating the tour.
The place of this dummy city in an optimal tour with minimal length is the best cutting point
(it lies between the most distant cities).
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Other Methods

• Identity permutation: ‘"Identity"

• Reverse Identity permutation: ‘"Reverse"

• Random permutation: "Random"
• Rank-two ellipse seriation: "R2E" (Chen 2002)

Rank-two ellipse seriation starts with generating a sequence of correlation matrices R1, R2, . . ..
R1 is the correlation matrix of the original distance matrix D (supplied to the function as x),
and

Rn+1 = ϕRn,

where ϕ calculates the correlation matrix.
The rank of the matrix Rn falls with increasing n. The first Rn in the sequence, which has a
rank of 2 is found. Projecting all points in this matrix on the first two eigenvectors, all points
fall on an ellipse. The order of the points on this ellipse is the resulting order.
The ellipse can be cut at the two interception points (top or bottom) of the vertical axis with
the ellipse. In this implementation, the topmost cutting point is used.

• Sorting Points Into Neighborhoods: "SPIN_STS", "SPIN_NH" (Tsafrir, 2005)
Given a weight matrix W , the SPIN algorithms try to minimize the energy for a permutation
(matrix P ) given by

F (P ) = tr(PDPTW ),

where tr denotes the matrix trace.
"SPIN_STS" implements the Side-to-Side algorithm, which tries to push out large distance
values. The default weight matrix suggested in the paper with W = XXT and Xi = i− (n+
1)/2 is used. We run the algorithm form step (25) iteration and restart the algorithm nstart
(10) with random initial permutations (default values in parentheses).
"SPIN_NH" implements the neighborhood algorithm (concentrate low distance values around
the diagonal) with a Gaussian weight matrix Wij = exp(−(i − j)2/nσ), where n is the size
of the dissimilarity matrix and σ is the variance around the diagonal that control the influence
of global (large σ) or local (small σ) structure.
We use the heuristic suggested in the paper for the linear assignment problem. We do not
terminate as indicated in the algorithm but run all the iterations since the heuristic does not
guarantee that the energy is strictly decreasing. We also implement the heuristic "annealing"
scheme where σ is successively reduced. The parameters in control are sigma which can be
a single value or a decreasing sequence (default: 20 to 1 in 10 steps), and step, which defines
how many update steps are performed before for each value of alpha. Via W_function a
custom function to create W with the function signature function(n, sigma, verbose)
can be specified.

• Visual Assessment of (Clustering) Tendency: "VAT" (Bezdek and Hathaway, 2002).
Creates an order based on Prim’s algorithm for finding a minimum spanning tree (MST) in a
weighted connected graph representing the distance matrix. The order is given by the order in
which the nodes (objects) are added to the MST.

Seriation methods for matrices (matrix)
Two-mode two-way data are general matrices. Some methods also require that the matrix is positive.
Data frames and contingency tables (base::table) are converted into a matrix. However, the default
methods are different.
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Some methods find the row and column order simultaneously, while others calculate them indepen-
dently. Currently, the following methods are implemented for matrix:

Seriating rows and columns simultaneously
Row and column order influence each other.

• Bond Energy Algorithm: "BEA" (McCormick, 1972).
The algorithm tries to maximize a non-negative matrix’s Measure of Effectiveness. Due to
the definition of this measure, the tasks of ordering rows and columns are separable and can
be solved independently.
BEA consists of the following three steps:

1. Place one randomly chosen column.
2. Try to place each remaining column at each possible position left, right and between the

already placed columns and calculate every time the increase in ME. Choose the column
and position which gives the largest increase in ME and place the column. Repeat till all
columns are placed.

3. Repeat procedure with rows.

The overall procedure amounts to two approximate traveling salesperson problems (TSP)
where the distance is the -1 times the ME increase. The BEA algorithm is equivalent to a
simple suboptimal TSP heuristic called ’cheapest insertion’. Several consecutive runs of the
algorithm might improve the energy if a better initial column/row is chosen.
Arabie and Hubert (1990) question its use with non-binary data if the objective is to find a
seriation or one-dimensional orderings of rows and columns.

• TSP to optimize the Measure of Effectiveness: "BEA_TSP" (Lenstra 1974).
Since BEA is equivalent to a simple TSP heuristic, we can use better TSP solvers to get better
results. Distances between rows are calculated for a M ×N data matrix as

djk = −
i=M∑
i=1

xijxik (j, k = 0, 1, ..., N).

Distances between columns are calculated the same way from the transposed data matrix.
Solving the two TSP using these distances optimizes the measure of effectiveness. With an
exact TSP solver, the optimal solution can be found.
control parameter:

– "method": a TSP solver method (see TSP::solve_TSP()).

• Unconstrained Brower and Kyle seriation: "BK_unconstrained" (Brower and Kyle 1988).
Reorderes 0-1 matrices to create a block structure along the diagonal. It iteratively reorders
by the mean row indices of 1s and mean column indices of 1s till the orders become stable.
control parameter: None

• Correspondence analysis "CA" (Friendly, 2023)
This function is designed to help simplify a mosaic plot or other displays of a matrix of fre-
quencies. It calculates a correspondence analysis of the matrix and an order for rows and
columns according to the scores on a correspondence analysis dimension.
This is the default method for contingency tables.
control parameters:
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– "dim": CA dimension used for reordering.
– "ca_param": List with parameters for the call to ca::ca().

Seriating rows and columns separately using dissimilarities

• Heatmap seriation: "Heatmap"
Calculates distances between rows and between columns and then applies seriation so each.
This is the default method for data frames.
control parameter:

– "seriation_method": a list with row and column seriation methods. The special method
"HC_Mean" is available to use hierarchical clustering with reordering the leaves by the
row/column means (see stats::heatmap()). Defaults to optimal leaf ordering "OLO".

– "seriation_control": a list with control parameters for row and column seriation
methods.

– "dist_fun": specify the distance calculation as a function.
– "scale": "none", "row", or "col".

Seriate rows using the data matrix
These methods need access to the data matrix instead of dissimilarities to reorder objects (rows).
Columns can also be reorderd by applying the same technique to the transposed data matrix.

• Order along the 1D locally linear embedding: "LLE"

Performs 1D the non-linear dimensionality reduction method locally linear embedding (see lle()).

• Order along the first principal component: "PCA"
Uses the projection of the data on its first principal component (using stats::princomp()) to
determine the order of rows. Performs the same procedure on the transposed matrix to obtain
the column order.
Note that for a distance matrix calculated from x with Euclidean distance, this method mini-
mizes the least square criterion.

• Angular order of the first two PCA components: "PCA_angle"
For rows, projects the data on the first two principal components and then orders by the angle
in this space. The order is split by the larges gap between adjacent angles. A similar method
was suggested by Friendly (2002) to order variables in correlation matrices by angles of first
two eigenvectors. PCA also computes the eigenvectors of the covariance matrix of the data.
Performs the same process on the transposed matrix for the column order.

Other methods

• Angular order of the first two eigenvectors: "AOE" (Friendly 2002)
This method reordered correlation matrices by the angle in the space spanned by the two
largest eigenvectors of the matrix. The order is split by the largest angle gap. This is the
original method proposed by Friendly (2002).

• By row/column mean: "Mean"
A transformation can be applied before calculating the means. The function is specified as
control parameter "transformation". Any function that takes as an input a matrix and re-
turns the transformed matrix can be used. Examples are scale or \(x) x^.5.
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• Identity permutation: "Identity"
• Reverse Identity permutation: "Reverse"
• Random permutation: "Random"

For general arrays no built-in methods are currently available.

Value

Returns an object of class ser_permutation.

Author(s)

Michael Hahsler
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See Also

Other seriation: register_DendSer(), register_GA(), register_optics(), register_smacof(),
register_tsne(), register_umap(), registry_for_seriation_methods, seriate_best()

Examples

# Show available seriation methods (for dist and matrix)
list_seriation_methods()

# show the description for ARSA
get_seriation_method("dist", name = "ARSA")

### Seriate as distance matrix (for 50 flowers from the iris dataset)
data("iris")
x <- as.matrix(iris[-5])
x <- x[sample(nrow(x), size = 50), ]
d <- dist(x)
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order <- seriate(d)
order

pimage(d, main = "Distances (Random Order)")
pimage(d, order, main = "Distances (Reordered)")

# Compare seriation quality
rbind(

random = criterion(d),
reordered = criterion(d, order)

)

# Reorder the distance matrix
d_reordered <- permute(d, order)
pimage(d_reordered, main = "Distances (Reordered)")

### Seriate a matrix (50 flowers from iris)

# To make the variables comparable, we scale the data
x <- scale(x, center = FALSE)

# The iris flowers are ordered by species in the data set
pimage(x, main = "original data", prop = FALSE)
criterion(x)

# Apply some methods
order <- seriate(x, method = "BEA_TSP")
pimage(x, order, main = "TSP to optimize ME", prop = FALSE)
criterion(x, order)

order <- seriate(x, method = "PCA")
pimage(x, order, main = "First principal component", prop = FALSE)
criterion(x, order)

order <- seriate(x, method = "heatmap")
pimage(x, order, main = "Heatmap seriation", prop = FALSE)
criterion(x, order)

# reorder the matrix
x_reordered <- permute(x, order)

# create a heatmap seriation manually by calculating
# distances between rows and between columns
order <- c(

seriate(dist(x), method = "OLO"),
seriate(dist(t(x)), method = "OLO")

)
pimage(x, order, main = "Heatmap seriation", prop = FALSE)
criterion(x, order)

### Seriate a correlation matrix
corr <- cor(x)
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# plot in original order
pimage(corr, main = "Correlation matrix")

# reorder the correlation matrix using the angle of eigenvectors
pimage(corr, order = "AOE", main = "Correlation matrix (AOE)")

# we can also define a distance (we used d = sqrt(1 - r)) and
# then reorder the matrix (rows and columns) using any seriation method.
d <- as.dist(sqrt(1 - corr))
o <- seriate(d, method = "R2E")
corr_reordered <- permute(corr, order = c(o, o))
pimage(corr_reordered, main = "Correlation matrix (R2E)")

seriate_best Best Seriation

Description

Often the best seriation method for a particular dataset is not know and heuristics may produce un-
stable results. seriate_best() and seriate_rep() automatically try different seriation methods
or rerun randomized methods several times to find the best and order given a criterion measure.
seriate_improve() uses a local improvement strategy to imporve an existing solution.

Usage

seriate_best(
x,
methods = NULL,
control = NULL,
criterion = NULL,
rep = 10L,
parallel = TRUE,
verbose = TRUE,
...

)

seriate_rep(
x,
method = NULL,
control = NULL,
criterion = NULL,
rep = 10L,
parallel = TRUE,
verbose = TRUE,
...

)
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seriate_improve(
x,
order,
criterion = NULL,
control = NULL,
verbose = TRUE,
...

)

Arguments

x the data.

methods a vector of character string with the name of the seriation methods to try.

control a list of control options passed on to seriate(). For seriate_best() control
needs to be a named list of control lists with the names matching the seriation
methods.

criterion seriate_rep() chooses the criterion specified for the method in the registry. A
character string with the criterion to optimize can be specified.

rep number of times to repeat the randomized seriation algorithm.

parallel logical; perform replications in parallel. Uses foreach::foreach() if a %dopar%
backend (e.g., doParallel::doParallel) is registered.

verbose logical; show progress and results for different methods

... further arguments are passed on to the seriate().

method a character string with the name of the seriation method (default: varies by data
type).

order a ser_permutation object for x or the name of a seriation method to start with.

Details

seriate_rep() rerun a randomized seriation methods to find the best solution given the criterion
specified for the method in the registry. A specific criterion can also be specified. Non-stochastic
methods are automatically only run once.

seriate_best() runs a set of methods and returns the best result given a criterion. Stochastic
methods are automatically randomly restarted several times.

seriate_improve() improves a seriation order using simulated annealing using a specified crite-
rion measure. It uses seriate() with method "GSA", a reduced probability to accept bad moves,
and a lower minimum temperature. Control parameters for this method are accepted.

Criterion
If no criterion is specified, then the criterion specified for the method in the registry (see [get_seriation_method()])
is used. For methods with no criterion in the registry (marked as "other"), a default method is used.
The defaults are:

• dist: "AR_deviations" - the study in Hahsler (2007) has shown that this criterion has high
similarity with most other criteria.

• matrix: "Moore_stress"
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Parallel Execution

Some methods support for parallel execution is provided using the foreach package. To use par-
allel execution, a suitable backend needs to be registered (see the Examples section for using the
doParallel backend).

Value

Returns an object of class ser_permutation.

Author(s)

Michael Hahsler

References

Hahsler, M. (2017): An experimental comparison of seriation methods for one-mode two-way data.
European Journal of Operational Research, 257, 133–143. doi:10.1016/j.ejor.2016.08.066

See Also

Other seriation: register_DendSer(), register_GA(), register_optics(), register_smacof(),
register_tsne(), register_umap(), registry_for_seriation_methods, seriate()

Examples

data(SupremeCourt)
d_supreme <- as.dist(SupremeCourt)

# find best seriation order (tries by by default several fast methods)
o <- seriate_best(d_supreme, criterion = "AR_events")
o
pimage(d_supreme, o)

# run a randomized algorithms several times. It automatically chooses the
# LS criterion. Repetition information is returned as attributes
o <- seriate_rep(d_supreme, "QAP_LS", rep = 5)

attr(o, "criterion")
hist(attr(o, "criterion_distribution"))
pimage(d_supreme, o)

## Not run:
# Using parallel execution on a larger dataset
data(iris)
m_iris <- as.matrix(iris[sample(seq(nrow(iris))),-5])
d_iris <- dist(m_iris)

library(doParallel)
registerDoParallel(cores = detectCores() - 1L)

# seriate rows of the iris data set

https://doi.org/10.1016/j.ejor.2016.08.066
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o <- seriate_best(d_iris, criterion = "LS")
o

pimage(d_iris, o)

# improve the order to minimize RGAR instead of LS
o_improved <- seriate_improve(d_iris, o, criterion = "RGAR")
pimage(d_iris, o_improved)

# available control parameters for seriate_improve()
get_seriation_method(name = "GSA")

## End(Not run)

ser_dist Dissimilarities and Correlations Between Seriation Orders

Description

Calculates dissimilarities/correlations between seriation orders in a list of type ser_permutation_vector.

Usage

ser_dist(x, y = NULL, method = "spearman", reverse = TRUE, ...)

ser_cor(x, y = NULL, method = "spearman", reverse = TRUE, test = FALSE)

ser_align(x, method = "spearman")

Arguments

x set of seriation orders as a list with elements which can be coerced into ser_permutation_vector
objects.

y if not NULL then a single seriation order can be specified. In this case x has to be
a single seriation order and not a list.

method a character string with the name of the used measure. Available measures are
for correlation and distances are "kendall","spearman" and "ppc" (positional
proximity coefficient). For distances only the additional methods "manhattan",
"euclidean", "hamming", and "aprd" (absolute pairwise rank differences) are
also available.

reverse a logical indicating if the revers orders should also be checked in for rank-based
methods.

... Further arguments passed on to the method.

test a logical indicating if a correlation test should be performed.
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Details

For seriation, an order and its reverse are considered identical and are often just an artifact due to
the method that creates the order. This is one of the major differences between seriation orders and
rankings which impacts how correlations and similarities between seriation orders are calculated.
The default setting reverse = TRUE corrects for this issue.

ser_cor() calculates the correlation between two seriation orders. For ranking-based correlation
measures (Spearman and Kendall) the absolute value of the correlation is returned. This effectively
corrects for correlations between reversed orders but has the effect that no negative correlations
exist. For test = TRUE, the appropriate test for association is performed and a matrix with p-values
is returned as the attribute "p-value". Note that no correction for multiple testing is performed.

For ser_dist(), the correlation coefficients (Kendall’s tau and Spearman’s rho) are converted into
a dissimilarity by taking one minus the correlation value. The Manhattan distance between the
ranks in a linear order is equivalent to Spearman’s footrule metric (Diaconis 1988). For the non-
correlation based measures, reverse = TRUE returns the pairwise minima using also the reversed
order.

Two precedence invariant measure especially developed for seriation are available. Here reverse
is ignored.

The positional proximity coefficient (ppc) is a precedence invariant measure based on product of
the squared positional distances in two permutations defined as (see Goulermas et al 2016):

dppc(R,S) = 1/h

n∑
j=2

j−1∑
i=1

(πR(i)− πR(j))
2 ∗ (πS(i)− πS(j))

2,

where R and S are two seriation orders, piR and piS are the associated permutation vectors and h
is a normalization factor. The associated generalized correlation coefficient is defined as 1− dppc.

The absolute pairwise rank difference (aprd) is also precedence invariant and defined as a distance
measure:

daprd(R,S) =

n∑
j=2

j−1∑
i=1

||πR(i)− πR(j)| − |πS(i)− πS(j)||p,

where p is the power which can be passed on as parameter p and is by default set to 2.

ser_align() tries to normalize the direction in a list of seriations such that ranking-based methods
can be used. We add for each permutation also the reversed order to the set and then use a modified
version of Prim’s algorithm for finding a minimum spanning tree (MST) to choose if the original
seriation order or its reverse should be used. We retain the direction of each order that is added to
the MST first. Every time an order is added, its reverse is removed from the possible remaining
orders.

Value

• ser_dist() returns an object of class stats::dist.

• ser_align() returns a new list with elements of class ser_permutation.
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Author(s)

Michael Hahsler

References

P. Diaconis (1988): Group Representations in Probability and Statistics, Institute of Mathematical
Statistics, Hayward, CA.

J.Y. Goulermas, A. Kostopoulos, and T. Mu (2016): A New Measure for Analyzing and Fusing
Sequences of Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 38(5):833-
48. doi:10.1109/TPAMI.2015.2470671

See Also

Other permutation: get_order(), permutation_vector2matrix(), permute(), ser_permutation(),
ser_permutation_vector()

Examples

set.seed(1234)
## seriate dist of 50 flowers from the iris data set
data("iris")
x <- as.matrix(iris[-5])
x <- x[sample(1:nrow(x), 50), ]
rownames(x) <- 1:50
d <- dist(x)

## Create a list of different seriations
methods <- c("HC_complete", "OLO", "GW", "VAT",

"TSP", "Spectral", "MDS", "Identity", "Random")

os <- sapply(methods, function(m) {
cat("Doing", m, "... ")
tm <- system.time(o <- seriate(d, method = m))
cat("took", tm[3],"s.\n")
o

})

## Compare the methods using distances. Default is based on
## Spearman's rank correlation coefficient where reverse orders are
## also considered.
ds <- ser_dist(os)
hmap(ds, margin = c(7,7))

## Compare using correlation between orders. Reversed orders have
## negative correlation!
cs <- ser_cor(os, reverse = FALSE)
hmap(cs, margin = c(7,7))

## Compare orders by allowing orders to be reversed.
## Now all but random and identity are highly positive correlated
cs2 <- ser_cor(os, reverse = TRUE)

https://doi.org/10.1109/TPAMI.2015.2470671
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hmap(cs2, margin=c(7,7))

## A better approach is to align the direction of the orders first
## and then calculate correlation.
os_aligned <- ser_align(os)
cs3 <- ser_cor(os_aligned, reverse = FALSE)
hmap(cs3, margin = c(7,7))

## Compare the orders using clustering. We use Spearman's foot rule
## (Manhattan distance of ranks). In order to use rank-based method,
## we align the direction of the orders.
os_aligned <- ser_align(os)
ds <- ser_dist(os_aligned, method = "manhattan")
plot(hclust(ds))

ser_permutation Class ser_permutation – A Collection of Permutation Vectors for Seri-
ation

Description

The class ser_permutation is a collection of permutation vectors (see class ser_permutation_vector),
one for each dimension (mode) of the data to be permuted.

Usage

ser_permutation(x, ...)

## S3 method for class 'ser_permutation'
print(x, ...)

## S3 method for class 'ser_permutation'
summary(object, ...)

## S3 method for class 'ser_permutation'
c(..., recursive = FALSE)

## S3 method for class 'ser_permutation'
object[i, ...]

Arguments

x, object an object of class ser_permutation_vector or any object which can be con-
verted into a object of class ser_permutation (e.g. an integer vector).

... vectors for further dimensions.

recursive ignored.

i index of the dimension(s) to extract.
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Value

An object of class ser_permutation.

Author(s)

Michael Hahsler

See Also

Other permutation: get_order(), permutation_vector2matrix(), permute(), ser_dist(), ser_permutation_vector()

Examples

o <- ser_permutation(1:5, 10:1)
o

## length (number of dimensions)
length(o)

## get permutation vector for 2nd dimension
get_order(o, 2)

## reverse dimensions
o[2:1]

## combine
o <- c(o, ser_permutation(1:15))
o

## get an individual permutation
o[[2]]

## reverse the order of a permutation
o[[2]] <- rev(o[[2]])
get_order(o,2)

ser_permutation_vector

Class ser_permutation_vector – A Single Permutation Vector for Seri-
ation

Description

The class ser_permutation_vector represents a single permutation vector.
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Usage

ser_permutation_vector(x, method = NULL)

## S3 method for class 'ser_permutation_vector'
c(..., recursive = FALSE)

## S3 method for class 'ser_permutation_vector'
rev(x)

get_method(x, printable = FALSE)

## S3 method for class 'ser_permutation_vector'
length(x)

## S3 method for class 'ser_permutation_vector'
print(x, ...)

## S3 method for class 'ser_permutation_vector'
summary(object, ...)

Arguments

x, object an object if class ser_permutation_vector. Options for the constructor are:
(1) an integer permutation vector, (2) an object of class hclust, (3) a numeric
vector with a MDS configuration, or (4) NA to indicate a identity permutation.

method a string representing the method used to obtain the permutation vector.

... further arguments.

recursive ignored

printable a logical; prints "unknown" instead of NULL for non-existing methods.

Details

A permutation vector maps a set of n objects {O1, O2, ..., On} onto itself.

Ordering Representation: In seriation we represent a permutation π as a vector which lists the
objects’ indices in their permuted order. This can be seen as replacing the object in position i
with the object in position π(i). For example, the permutation vector ⟨3, 1, 2⟩ indicates that in first
position is the object with index 3 then the object with index 1 and finally the object with index
2. This representation is often called a (re)arrangement or ordering. The ordering can be extracted
from a permutation vector object via get_order(). Such an ordering can be directly used to subset
the list of original objects with "[" to apply the permutation.

Rank Representation: An alternative way to specify a permutation is via a list of the ranks of the
objects after permutation. This representation is often called a map or substitution. Ranks can be
extracted from a permutation vector using get_rank().

Permutation Matrix: Another popular representation is a permutation matrix which performs per-
mutations using matrix multiplication. A permutation matrix can be obtained using get_permutation_matrix().



82 SupremeCourt

ser_permutation_vector objects are usually packed into a ser_permutation object which is a
collection (a list) of k permutation vectors for k-mode data.

The constructor ser_permutation_vector() checks if the permutation vector is valid (i.e. if all
integers occur exactly once).

Value

The constructor ser_permutation_vector() returns an object a ser_permutation_vector

Author(s)

Michael Hahsler

See Also

Other permutation: get_order(), permutation_vector2matrix(), permute(), ser_dist(), ser_permutation()

Examples

o <- structure(sample(10), names = paste0("X", 1:10))
o

p <- ser_permutation_vector(o, "random")
p

## some methods
length(p)
get_method(p)
get_order(p)
get_rank(p)
get_permutation_matrix(p)

r <- rev(p)
r
get_order(r)

## create a symbolic identity permutation vector (with unknown length)
## Note: This can be used to permute an object, but methods
## like length and get_order are not available.
ip <- ser_permutation_vector(NA)
ip

SupremeCourt Voting Patterns in the Second Rehnquist U.S. Supreme Court

Description

Contains a (a subset of the) decisions for the stable 8-yr period 1995-2002 of the second Rehnquist
Supreme Court. Decisions are aggregated to the joint probability for disagreement between judges.
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Format

A square, symmetric 9-by-9 matrix with the joint probability for disagreement.

Author(s)

Michael Hahsler

References

Sirovich, L. (2003). A pattern analysis of the second Rehnquist
U.S. Supreme Court. _Proceedings of the National Academy of Sciences of the United
States of America,_ **100**, 7432-7437. \doi{10.1073/pnas.1132164100}

See Also

Other data: Chameleon, Irish, Munsingen, Townships, Wood, Zoo, create_lines_data(), is.robinson()

Examples

data("SupremeCourt")

# a matrix with joint probability of disagreement
SupremeCourt

# show judges in original alphabetical order
d <- as.dist(SupremeCourt)
pimage(d, diag = TRUE, upper = TRUE)

# reorder judges using seriation based on similar decisions
o <- seriate(d)
o

pimage(d, o, diag = TRUE, upper = TRUE)

# Use optimal leaf ordering (hierarchical clustering with reordering)
# which uses a dendrogram
o <- seriate(d, method = "OLO")
o

plot(o[[1]])

# Use multi-dimensional scaling and show the configuration
o <- seriate(d, method = "sammon")
o

pimage(d, o, diag = TRUE, upper = TRUE)
plot_config(o[[1]])
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Townships Bertin’s Characteristics of Townships

Description

This data contains nine characteristics for 16 townships. The data set was used by Bertin (1981) to
illustrate that the conciseness of presentation can be improved by seriating the rows and columns.

Format

A matrix with 16 0-1 variables (columns) indicating the presence (1) or absence (0) of characteris-
tics of townships (rows).

Author(s)

Michael Hahsler

References

Bertin, J. (1981): Graphics and Graphic Information Processing. Berlin, Walter de Gruyter.

See Also

Other data: Chameleon, Irish, Munsingen, SupremeCourt, Wood, Zoo, create_lines_data(),
is.robinson()

Examples

data("Townships")

## original data
pimage(Townships)
criterion(Townships)

## seriated data using an improved Bond-Energy Algorithm
order <- seriate(Townships, method = "BEA_TSP")
pimage(Townships, order)
criterion(Townships, order)
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uniscale Fit an Unidimensional Scaling for a Seriation Order

Description

Fits an (approximate) unidimensional scaling configuration given an order.

Usage

uniscale(d, order, accept_reorder = FALSE, warn = TRUE, ...)

MDS_stress(d, order, refit = TRUE, warn = FALSE)

get_config(x, dim = 1L, ...)

plot_config(x, main, pch = 19, labels = TRUE, pos = 1, cex = 1, ...)

Arguments

d a dissimilarity matrix.

order a precomputed permutation (configuration) order.

accept_reorder logical; accept a configuration that does not preserve the requested order. If
FALSE, the initial configuration stored in order or, an equally spaced configura-
tion is returned.

warn logical; produce a warning if the 1D MDS fit does not preserve the given order.

... additional arguments are passed on to the seriation method.

refit logical; forces to refit a minimum-stress MDS configuration, even if order con-
tains a configuration.

x a scaling returned by uniscale() or a ser_permutation with a configuration
attribute.

dim The dimension if x is a ser_permutation object.

main main plot label

pch print character

labels add the object names to the plot

pos label position for 2D plot (see text()).

cex label expansion factor.

Details

This implementation uses the method describes in Maier and De Leeuw (2015) to calculate the
minimum stress configuration for a given (seriation) order by performing a 1D MDS fit. If the 1D
MDS fit does not preserve the given order perfectly, then a warning is produced indicating for how
many positions order could not be preserved. The seriation method which is consistent to uniscale
is "MDS_smacof" which needs to be registered with register_smacof().
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The code is similar to smacof::uniscale() (de Leeuw, 2090), but scales to larger datasets since it
only uses the permutation given by order.

MDS_stress() calculates the normalized stress of a configuration given by a seriation order. If the
order does not contain a configuration, then a minimum-stress configuration if calculates for the
given order.

All distances are first normalized to an average distance of close to 1 using dij

√
n(n−1)/2√∑

i<j dij
2

.

Some seriation methods produce a MDS configuration (a 1D or 2D embedding). get_config()
retrieved the configuration attribute from the ser_permutation_vector. NULL is returned if the
seriation did not produce a configuration.

plot_config() plots 1D and 2D configurations. ... is passed on to plot.default and accepts
col, labels, etc.

Value

A vector with the fitted configuration.

Author(s)

Michael Hahsler with code from Patrick Mair (from smacof::uniscale()).

References

Mair P., De Leeuw J. (2015). Unidimensional scaling. In Wiley StatsRef: Statistics Reference
Online, Wiley, New York. doi:10.1002/9781118445112.stat06462.pub2

Jan de Leeuw, Patrick Mair (2009). Multidimensional Scaling Using Majorization: SMACOF in R.
Journal of Statistical Software, 31(3), 1-30. doi:10.18637/jss.v031.i03

See Also

register_smacof()

Examples

data(SupremeCourt)
d <- as.dist(SupremeCourt)
d

# embedding-based methods return "configuration" attribute
# plot_config visualizes the configuration
o <- seriate(d, method = "sammon")
get_order(o)
plot_config(o)

# the configuration (Note: objects are in the original order in d)
get_config(o)

# angle methods return a 2D configuration
o <- seriate(d, method = "MDS_angle")
get_order(o)

https://doi.org/10.1002/9781118445112.stat06462.pub2
https://doi.org/10.18637/jss.v031.i03
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get_config(o)
plot_config(o, )

# calculate a configuration for a seriation method that does not
# create a configuration
o <- seriate(d, method = "ARSA")
get_order(o)
get_config(o)

# find the minimum-stress configuration for the ARSA order
sc <- uniscale(d, o)
sc

plot_config(sc)

VAT Visual Analysis for Cluster Tendency Assessment (VAT/iVAT)

Description

Implements Visual Analysis for Cluster Tendency Assessment (VAT; Bezdek and Hathaway, 2002)
and Improved Visual Analysis for Cluster Tendency Assessment (iVAT; Wang et al, 2010).

Usage

VAT(x, upper_tri = TRUE, lower_tri = TRUE, ...)

iVAT(x, upper_tri = TRUE, lower_tri = TRUE, ...)

path_dist(x)

ggVAT(x, upper_tri = TRUE, lower_tri = TRUE, ...)

ggiVAT(x, upper_tri = TRUE, lower_tri = TRUE, ...)

Arguments

x a dist object.
upper_tri, lower_tri

a logical indicating whether to show the upper or lower triangle of the VAT
matrix.

... further arguments are passed on to pimage for the regular plots and ggpimage
for the ggplot2 plots.

Details

path_dist() redefines the distance between two objects as the minimum over the largest distances
in all possible paths between the objects as used for iVAT.



88 VAT

Value

Nothing.

Author(s)

Michael Hahsler

References

Bezdek, J.C. and Hathaway, R.J. (2002): VAT: a tool for visual assessment of (cluster) tendency.
Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN ’02), Volume:
3, 2225–2230.

Havens, T.C. and Bezdek, J.C. (2012): An Efficient Formulation of the Improved Visual Assessment
of Cluster Tendency (iVAT) Algorithm, IEEE Transactions on Knowledge and Data Engineering,
24(5), 813–822.

Wang L., U.T.V. Nguyen, J.C. Bezdek, C.A. Leckie and K. Ramamohanarao (2010): iVAT and
aVAT: Enhanced Visual Analysis for Cluster Tendency Assessment, Proceedings of the PAKDD
2010, Part I, LNAI 6118, 16–27.

See Also

Other plots: bertinplot(), dissplot(), hmap(), palette(), pimage()

Examples

## lines data set from Havens and Bezdek (2011)
x <- create_lines_data(250)
plot(x, xlim=c(-5,5), ylim=c(-3,3), cex=.2)
d <- dist(x)

## create regular VAT
VAT(d, main = "VAT for Lines")
## same as: pimage(d, seriate(d, "VAT"))

## ggplot2 version
if (require("ggplot2")) {

ggVAT(d) + labs(title = "VAT")
}

## create iVAT which shows visually the three lines
iVAT(d, main = "iVAT for Lines")
## same as:
## d_path <- path_dist(d)
## pimage(d_path, seriate(d_path, "VAT for Lines"))

## ggplot2 version
if (require("ggplot2")) {

ggiVAT(d) + labs(title = "iVAT for Lines")
}
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## compare with dissplot (shows banded structures and relationship between
## center line and the two outer lines)
dissplot(d, method = "OLO_single", main = "Dissplot for Lines", col = bluered(100, bias = .5))

## compare with optimally reordered heatmap
hmap(d, method = "OLO_single", main = "Heatmap for Lines (opt. leaf ordering)",

col = bluered(100, bias = .5))

Wood Gene Expression Data for Wood Formation in Poplar Trees

Description

A data matrix containing a sample of the normalized gene expression data for 6 locations in the stem
of Popla trees published in the study by Herzberg et al (2001). The sample of 136 genes selected
by Caraux and Pinloche (2005).

Format

The format is a 136 x 6 matrix.

Source

The data was obtained from http://www.atgc-montpellier.fr/permutmatrix/manual/Exemples/
Wood/Wood.htm.

References

Hertzberg M., H. Aspeborg, J. Schrader, A. Andersson, R.Erlandsson, K. Blomqvist, R. Bhalerao,
M. Uhlen, T. T. Teeri, J. Lundeberg, Bjoern Sundberg, P. Nilsson and Goeran Sandberg (2001): A
transcriptional roadmap to wood formation, PNAS, 98(25), 14732–14737.

Caraux G. and Pinloche S. (2005): PermutMatrix: a graphical environment to arrange gene expres-
sion profiles in optimal linear order, Bioinformatics, 21(7) 1280–1281.

See Also

Other data: Chameleon, Irish, Munsingen, SupremeCourt, Townships, Zoo, create_lines_data(),
is.robinson()

Examples

data(Wood)
head(Wood)

http://www.atgc-montpellier.fr/permutmatrix/manual/Exemples/Wood/Wood.htm
http://www.atgc-montpellier.fr/permutmatrix/manual/Exemples/Wood/Wood.htm


90 Zoo

Zoo Zoo Data Set

Description

A database containing characteristics of different animals. The database was created and donated
by Richard S. Forsyth and is available from the UCI Machine Learning Repository (Newman et al,
1998).

Format

A data frame with 101 observations on the following 17 variables.

hair a numeric vector

feathers a numeric vector

eggs a numeric vector

milk a numeric vector

airborne a numeric vector

aquatic a numeric vector

predator a numeric vector

toothed a numeric vector

backbone a numeric vector

breathes a numeric vector

venomous a numeric vector

fins a numeric vector

legs a numeric vector

tail a numeric vector

domestic a numeric vector

catsize a numeric vector

class a factor with levels amphibian bird fish insect invertebrate mammal reptile

Source

David Aha, Patrick Murphy, Christopher Merz, Eamonn Keogh, Cathy Blake, Seth Hettich, David
Newman, Arthur Asuncion, Moshe Lichman, Dheeru Dua, Casey Graff (2023): UCI Machine
Learning Repository, https://archive.ics.uci.edu/, University of California, Irvine.

See Also

Other data: Chameleon, Irish, Munsingen, SupremeCourt, Townships, Wood, create_lines_data(),
is.robinson()

https://archive.ics.uci.edu/


Zoo 91

Examples

data("Zoo")
x <- scale(Zoo[, -17])

d <- dist(x)
pimage(d)

order <- seriate(d, method = "tsp")
pimage(d, order)
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