
Package ‘maximin’
December 6, 2024

Title Space-Filling Design under Maximin Distance

Version 1.0-6

Date 2024-12-05

Depends R (>= 4.2.0)

Imports plgp

Suggests lhs

Description Constructs a space-filling design under the criterion of maximum-
minimum distance. Both discrete and continuous searches are provided.

Maintainer Furong Sun <furong.sun@gmail.com>

License LGPL

NeedsCompilation no

Repository CRAN

Date/Publication 2024-12-06 15:10:06 UTC

Author Furong Sun [aut, cre],
Robert B. Gramacy [aut]

Contents
lola_kn . 1
maximin . 2

Index 6

lola_kn spatial locations of 1535 weather stations

Description

The dataset contains spatial locations of 1535 weather stations for measuring solar irradiance across
the continental United States.

1

2 maximin

Usage

data(lola_kn)

Format

A data frame containing 1535 observations and 2 variables

Source

https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.11414

References

F. Sun, R.B. Gramacy, B. Haaland, S.Y. Lu, and Y. Hwang (2019) Synthesizing Simulation and
Field Data of Solar Irradiance, Statistical Analysis and Data Mining, 12(4), 311-324; preprint on
arXiv:1806.05131.

maximin Space-filling design under the criterion of maximin distance

Description

Generates a space-filling design under the criterion of maximum-minimum distance; both discrete
and continuous searches are provided.

Usage

maximin.cand(n, Xcand, Tmax, Xorig=NULL, init=NULL, verb=FALSE, tempfile=NULL)
maximin(n, p, T, Xorig=NULL, Xinit=NULL, verb=FALSE, plot=FALSE, boundary=FALSE)

Arguments

n the number of space-filling locations

Xcand the candidate set, from which each space-filling location is selected

Tmax the number of iterations; Tmax <= nrow(Xcand); to be safe, set Tmax = nrow(Xcand).

Xorig the existing design; ncol(Xorig) = ncol(Xcand)

init the initial indices of X; it can be randomly selected from Xcand or introduced
from a previous experiment.

verb progress indicator — every tenth iteration is printed out; by default verb =
FALSE.

tempfile the name of a temporary file given the progress is saved with each iteration; by
default tempfile = NULL

p the dimensionality of input space

T the number of iterations; T > n; setting T = 10 ∗ n is a good starting point.

https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.11414

maximin 3

Xinit the (initial) design introduced from a previous experiment
plot if plot = TRUE, then the search space and the "start location –> new location"

with each iteration is plotted; if p > 2, then TWO input coordinates are RAN-
DOMLY chosen for plotting; it is worth noticing that the search space only
VISUALLY makes sense when p = 2.

boundary if boundary = TRUE, then for each iteration, the "to-be-swapped-in" location will
be away from the boundary in addition to being away from other X locations and
Xorig; how far is it? min(d, 4 ∗ d.bound), where d is the Euclidean distance
between the "to-be-swapped-in" location and other X locations as well as Xorig,
while d.bound is the minimum Euclidean distance between the "to-be-swapped-
in" location and the boundaries.

Details

Constructing a space-filling design under the criterion of maximum-minimum distance is quite use-
ful in computer experiments and related fields. Previously, researchers would construct such a
design in a random accept-reject way, i.e., randomly propose a location within the study region
to replace a randomly selected row from the initial design. If such a proposal increases the mini-
mum pairwise Euclidean distance, then accept the replacement; otherwise keep the original design
location. By repeatedly proposing (and accept-rejecting) in this way one is able to construct an
(approximately) space-filling design. However the algorithm is inefficient computationally. The
reason is that the proposals are not optimized in any way.

In this package, we provide an alternative to build up a well-defined space-filling design more
efficiently. There are two versions, one is with discrete search, while the other is with continuous
search. For the former, each iteration proposes to swap out a row from the initial design with the
minimum distance, and swap in one location from a candidate set to increase the minimum distance.
For the latter, the core idea is the same, but instead of working with a candidate set, optim is used to
maximize the distance between the "to-be-swapped-in" location and other design locations as well
as to any existing design, Xorig. Several heuristics are deployed for situations where the search
becomes stuck in a local mode. One involves moving to a location with non-minimum distance,
and the other is to jump to a location which has the maximum minimum distance.

For a visualization of applying maximin.cand in a real-life problem on solar irradiance, see Sun et
al. (2019).

maximin.cand returns the indices of Xcand, which makes the final space-filling design, and the
minimum pairwise Euclidean distance with each iteration

maximin returns the combined existing design and the space-filling design, together with the mini-
mum pairwise Euclidean distance with each iteration

Value

maximin.cand returns

inds the indices of Xcand, which makes the final space-filling design
mis the minimum distance with each iteration; length(mis) = Tmax + 1

maximin returns

Xf dim(Xf) = (nrow(Xorig) + n) * p

mi the minimum distance with each iteration; length(mi) = T + 1

4 maximin

Author(s)

Furong Sun <furong.sun@gmail.com> and Robert B. Gramacy <rbg@vt.edu>

References

F. Sun, R.B. Gramacy, B. Haaland, S.Y. Lu, and Y. Hwang (2019) Synthesizing Simulation and
Field Data of Solar Irradiance, Statistical Analysis and Data Mining, 12(4), 311-324; preprint on
arXiv:1806.05131.

M.H.Y. Tan (2013) Minimax Designs for Finite Design Regions, Technometrics, 55(3), 346-358.

M.E. Johnson, L.M. Moore, and D. Yivisaker (1990) Minimax and Maximin Distance Designs,
Journal of Statistical Planning and Inference, 26(2), 131-148.

Examples

Not run:
maximin.cand
generate the design
library("lhs")
n <- 100
p <- 2
Xorig <- randomLHS(10, p)
x1 <- seq(0, 1, length.out=n)
Xcand <- expand.grid(replicate(p, x1, simplify=FALSE))
names(Xcand) <- paste0("x", 1:2)
T <- nrow(Xcand)
Xsparse <- maximin.cand(n=n, Xcand=Xcand, Tmax=T, Xorig=Xorig,

init=NULL, verb=FALSE, tempfile=NULL)

maxmd <- as.numeric(format(round(max(na.omit(Xsparse$mis)), 5), nsmall=5))

visualization
par(mfrow=c(1, 2))
X <- Xcand[Xsparse$inds,]
plot(X$x1, X$x2, xlab=expression(x[1]), ylab=expression(x[2]),

xlim=c(0, 1), ylim=c(0, 1),
main=paste0("n=", n, "_p=", p, "_maximin=", maxmd))

points(Xorig, col=2, pch=20)
abline(h=c(0, 1), v=c(0, 1), lty=2, col=2)
if(!is.null(Xorig))
{

legend("topright", "Xorig", xpd=TRUE, horiz=TRUE,
inset=c(-0.03, -0.05), pch=20, col=2, bty="n")

}
plot(log(na.omit(Xsparse$mis)), type="b",

xlab="iteration", ylab="log(minimum distance)",
main="progress on minimum distance")

abline(v=n, lty=2)
mtext(paste0("design size=", n), at=n, cex=0.6)

End(Not run)

maximin 5

maximin
generate the design
library("lhs")
n <- 10
p <- 2
T <- 10*n
Xorig <- randomLHS(10, p)
Xsparse <- maximin(n=n, p=p, T=T, Xorig=Xorig, Xinit=NULL,

verb=FALSE, plot=FALSE, boundary=FALSE)
maxmd <- as.numeric(format(round(Xsparse$mi[T+1], 5), nsmall=5))

visualization
par(mfrow=c(1,2))
plot(Xsparse$Xf[,1], Xsparse$Xf[,2], xlab=expression(x[1]), ylab=expression(x[2]),

xlim=c(0, 1), ylim=c(0, 1),
main=paste0("n=", n, " p=", p, " T=", T, " maximin=", maxmd))

points(Xorig, col=2, pch=20)
abline(h=c(0,1), v=c(0,1), lty=2, col=2)
if(!is.null(Xorig)) legend("topright", "Xorig", xpd=TRUE, horiz=TRUE,

inset=c(-0.03, -0.05), pch=20, col=2, bty="n")
plot(log(Xsparse$mi), type="b", xlab="iteration", ylab="log(minimum distance)",

main="progress on minimum distance")
abline(v=n, lty=2)
mtext(paste0("design size=", n), at=n, cex=0.6)
abline(v=T, lty=2)
mtext(paste0("max.md=", maxmd), at=T, cex=0.6)

Index

∗ computer experiment
maximin, 2

∗ datasets
lola_kn, 1

∗ maximin distance
maximin, 2

∗ space-filling design
maximin, 2

lola_kn, 1

maximin, 2

optim, 3

6

	lola_kn
	maximin
	Index

