hackeRnews

CRAN status CRAN status R-CMD-check

The hackeRnews package is an R wrapper for the Hacker News API. Project for Advanced R classes at the Warsaw University of Technology.

Installation and basic setup

The hackeRnews package is available on CRAN and can be installed with:

install.packages("hackeRnews")

You can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("szymanskir/hackeRnews")

The Hacker News API is constructed in such a way that a single item is retrieved with a single request. This means that the retrieval of 200 items requires 200 separate API calls. Processing this amount of requests sequentially takes a significant amount of time. In order to solve this issue the hackeRnews package makes use of the built-in support for parallel requests in httr2 (httr2::req_perform_parallel).

library(hackeRnews)

Cheatsheet

Cheatsheet of the package

Examples

Identify buzzwords in job offers posted on Hacker News

library(dplyr)
library(ggplot2)
library(ggwordcloud)
library(stringr)
library(tidytext)

job_stories <- get_latest_job_stories()

# get titles, normalize used words, remove non alphabet characters
title_words <- unlist(
  lapply(job_stories, function(job_story) job_story$title) %>% 
  str_replace_all('[^A-Z|a-z]', ' ') %>% 
  str_replace_all('\\s\\s*', ' ') %>% 
  str_to_upper() %>% 
  str_split(' ')
)

# remove stop words
data('stop_words')
df <- data.frame(word = title_words, stringsAsFactors = FALSE) %>% 
  filter(str_length(word) > 0 & !str_to_lower(word) %in% stop_words$word) %>% 
  count(word)

# add colors to beautify visualization
df <- df %>% 
  mutate(color=factor(sample(10, nrow(df), replace=TRUE)))

word_cloud <- ggplot(df, aes(label = word, size = n, color = color)) + 
  geom_text_wordcloud() + 
  scale_size_area(max_size = 15)

word_cloud

Word cloud of latest job stories

library(stringr)
library(ggplot2)

best_stories <- get_best_stories(max_items=10)

df <- data.frame(
  title = sapply(best_stories, function(best_story) str_wrap(best_story$title, 42)),
  score = sapply(best_stories, function(best_story) best_story$score),
  stringsAsFactors = FALSE
)

df$title <- factor(df$title, levels=df$title[order(df$score)])

best_stories_plot <- ggplot(df, aes(x = title, y = score, label=score)) +
  geom_col() +
  geom_label() +
  coord_flip() +
  ggtitle('Best stories') +
  xlab('Story title') +
  ylab('Score')

best_stories_plot

Bar Chart of best stories with their scores

Sentiment analysis on two best stories from Hacker News

library(dplyr)
library(ggplot2)
library(stringr)
library(textdata)
library(tidytext)
data('stop_words')

best_stories <- get_best_stories(max_items = 2)

words_by_story <- lapply(best_stories, function(story) {
  words <- get_comments(story) %>% 
    pull(text) %>% 
    str_replace_all('[^A-Z|a-z]', ' ') %>%
    str_to_lower() %>%
    str_replace_all('\\s\\s*', ' ') %>% 
    str_split(' ', simplify = TRUE)
  
  filtered_words <- words[words != ""] %>% 
    setdiff(stop_words$word)

  data.frame(
    story_title = rep(story$title, length(filtered_words)),
    word = filtered_words,
    stringsAsFactors = FALSE
  )
}) %>% bind_rows()

sentiment <- get_sentiments("afinn")

sentiment_plot <- words_by_story %>% 
  inner_join(sentiment, by = "word") %>% 
  ggplot(aes(x = value, fill = story_title)) +
  geom_density(alpha = 0.5) +
  scale_x_continuous(breaks=c(-5, 0, 5),
                   labels=c("Negative", "Neutral", "Positive"),
                   limits=c(-6, 6)) +
  theme_minimal() +
  theme(axis.title.x=element_blank(),
      axis.title.y=element_blank(),
      axis.text.y=element_blank(),
      axis.ticks.y=element_blank(),
      plot.title=element_text(hjust=0.5),
      legend.position = 'top') +
  labs(fill='Story') +
  ggtitle('Sentiment for 2 chosen stories')

sentiment_plot

Sentiment plot for 2 chosen stories