MultiRR: Bias, Precision, and Power for Multi-Level Random Regressions

Calculates bias, precision, and power for multi-level random regressions. Random regressions are types of hierarchical models in which data are structured in groups and (regression) coefficients can vary by groups. Tools to estimate model performance are designed mostly for scenarios where (regression) coefficients vary at just one level. 'MultiRR' provides simulation and analytical tools (based on 'lme4') to study model performance for random regressions that vary at more than one level (multi-level random regressions), allowing researchers to determine optimal sampling designs.

Version: 1.1
Imports: MASS, lme4
Published: 2015-10-21
DOI: 10.32614/CRAN.package.MultiRR
Author: Yimen G. Araya-Ajoy
Maintainer: Yimen G. Araya-Ajoy <yimencr at gmail.com>
License: GPL-2
NeedsCompilation: no
CRAN checks: MultiRR results [issues need fixing before 2025-01-10]

Documentation:

Reference manual: MultiRR.pdf

Downloads:

Package source: MultiRR_1.1.tar.gz
Windows binaries: r-devel: MultiRR_1.1.zip, r-release: MultiRR_1.1.zip, r-oldrel: MultiRR_1.1.zip
macOS binaries: r-release (arm64): MultiRR_1.1.tgz, r-oldrel (arm64): MultiRR_1.1.tgz, r-release (x86_64): MultiRR_1.1.tgz, r-oldrel (x86_64): MultiRR_1.1.tgz
Old sources: MultiRR archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=MultiRR to link to this page.